Macular retinal thickness and flow density change by optical coherence tomography angiography after posterior scleral reinforcement

  • Liya QiaoEmail author
  • Xifang Zhang
  • Catherine Jan
  • Xiaoxia Li
  • Meng Li
  • Huaizhou Wang
Research Paper


Optical coherence tomography angiography (Angio-OCT) has introduced a new non-invasive, quantitative method to assess superficial and deep capillary networks of the retina. In this study, we investigated macular retinal thickness and flow density change following posterior scleral reinforcement (PSR) surgery, using an RTVue XR Avanti Angio-OCT (A2016.2.0.35, Optovue, Fremont, CA), in patients with pathological myopia. A total of 13 patients with pathological myopia were recruited and all patients completed the 6 months follow-up visit. Data from 22 eyes were used in this study. The mean age was 36.23±15.29 years, and 43% (n=6) were men. Spherical equivalent refractive error (SE) ranged from −8.0 to −24.0 D. Post-operative axial length, best-corrected visual acuity and SE did not change significantly at each follow-up, compared with preoperative measure (all P>0.05). Postoperative flow density of superficial and deep retinal layers at each sector did not change significantly at each follow-up, compared to pre-operative measure (all P>0.05). However, we found significant decrease in retinal thickness of parafovea-inferior sector after PSR surgery (P<0.01), indicating potential relaxation of vitreofoveal traction after PSR surgery.


macular retinal thickness macular flow density optical coherence tomography angiography posterior scleral reinforcement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Priming Scientific Research Foundation for the junior researcher in Beijing Tongren Hospital, Capital Medical University (2018-YJJ-ZZL-034). The authors thank Professor Ian Morgan for his helpful comments and suggestions.


  1. Benhamou, N., Massin, P., Haouchine, B., Erginay, A., and Gaudric, A. (2002). Macular retinoschisis in highly myopic eyes. Am J Ophthalmol 133, 794–800.CrossRefGoogle Scholar
  2. Chen, M., Dai, J., Chu, R., and Qian, Y. (2013). The efficacy and safety of modified Snyder-Thompson posterior scleral reinforcement in extensive high myopia of Chinese children. Graefes Arch Clin Exp Ophthalmol 251, 2633–2638.CrossRefGoogle Scholar
  3. Curtin, B.J., and Whitmore, W.G. (1987). Long-term results of scleral reinforcement surgery. Am J Ophthalmol 103, 544–548.CrossRefGoogle Scholar
  4. Guo, X., Xiao, O., Chen, Y., Wu, H., Chen, L., Morgan, I.G., and He, M. (2017). Three-dimensional eye shape, myopic maculopathy, and visual acuity: The Zhongshan Ophthalmic Center-Brien Holden Vision Institute High Myopia Cohort Study. Ophthalmology 124, 679–687.CrossRefGoogle Scholar
  5. Hayashi, K., Ohno-Matsui, K., Shimada, N., Moriyama, M., Kojima, A., Hayashi, W., Yasuzumi, K., Nagaoka, N., Saka, N., Yoshida, T., et al. (2010). Long-term pattern of progression of myopic maculopathy. Ophthalmology 117, 1595–1611.e4.CrossRefGoogle Scholar
  6. Ikuno, Y., Gomi, F., and Tano, Y. (2005). Potent retinal arteriolar traction as a possible cause of myopic foveoschisis. Am J Ophthalmol 139, 462–467.CrossRefGoogle Scholar
  7. Ji, X., Wang, J., Zhang, J., Sun, H., Jia, X., and Zhang, W. (2011). The effect of posterior scleral reinforcement for high myopia macular splitting. J Int Med Res 39, 662–666.CrossRefGoogle Scholar
  8. Jia, Y., Tan, O., Tokayer, J., Potsaid, B., Wang, Y., Liu, J.J., Kraus, M.F., Subhash, H., Fujimoto, J.G., Hornegger, J., et al. (2012). Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20, 4710–4725.CrossRefGoogle Scholar
  9. Li, M., Wang, H., Liu, Y., Zhang, X., and Wang, N. (2016). Comparison of time-domain, spectral-domain and swept-source OCT in evaluating aqueous cells in vitro. Sci China Life Sci 59, 1319–1323.CrossRefGoogle Scholar
  10. Mateo, C., Burés-Jelstrup, A., Navarro, R., and Corcóstegui, B. (2012). Macular buckling for eyes with myopic foveoschisis secondary to posterior staphyloma. Retina 32, 1121–1128.CrossRefGoogle Scholar
  11. McAlinden, C., Khadka, J., and Pesudovs, K. (2011). Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthal Physiol Opt 31, 330–338.CrossRefGoogle Scholar
  12. Mo, J., Duan, A.L., Chan, S.Y., Wang, X.F., and Wei, W.B. (2016). Application of optical coherence tomography angiography in assessment of posterior scleral reinforcement for pathologic myopia. Int J Ophthalmol 9, 1761–1765.Google Scholar
  13. Morgan, I.G., French, A.N., Ashby, R.S., Guo, X., Ding, X., He, M., and Rose, K.A. (2017). The epidemics of myopia: Aetiology and prevention. Prog Retinal Eye Res 62, 134–149.CrossRefGoogle Scholar
  14. Savastano, M.C., Lumbroso, B., and Rispoli, M. (2015). In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina 35, 2196–2203.CrossRefGoogle Scholar
  15. Shen, Z.M., Zhang, Z.Y., Zhang, L.Y., Li, Z.G., and Chu, R.Y. (2015). Posterior scleral reinforcement combined with patching therapy for preschool children with unilateral high myopia. Graefes Arch Clin Exp Ophthalmol 253, 1391–1395.CrossRefGoogle Scholar
  16. Su, J., Iomdina, E., Tarutta, E., Ward, B., Song, J., and Wildsoet, C.F. (2009). Effects of poly(2-hydroxyethyl methacrylate) and poly(vinylpyrrolidone) hydrogel implants on myopic and normal chick sclera. Exp Eye Res 88, 445–457.CrossRefGoogle Scholar
  17. Thompson, F.B. (1978). A simplified scleral reinforcement technique. Am J Ophthalmol 86, 782–790.CrossRefGoogle Scholar
  18. Thompson, F.B. (1985). Scleral reinforcement for high myopia. Ophthalmic Surg 16, 90–94.Google Scholar
  19. Ward, B. (2013). Degenerative myopia. Retina 33, 224–231.CrossRefGoogle Scholar
  20. Ward, B., Tarutta, E.P., and Mayer, M.J. (2009). The efficacy and safety of posterior pole buckles in the control of progressive high myopia. Eye 23, 2169–2174.CrossRefGoogle Scholar
  21. Xin, C., Tian, N., Li, M., Wang, H., and Wang, N. (2018). Mechanism of the reconstruction of aqueous outflow drainage. Sci China Life Sci 61, 534–540.CrossRefGoogle Scholar
  22. Xue, A., Bao, F., Zheng, L., Wang, Q., Cheng, L., and Qu, J. (2014). Posterior scleral reinforcement on progressive high myopic young patients. Optom Vis Sci 91, 412–418.CrossRefGoogle Scholar
  23. Yan, Z., Wang, C., Chen, W., and Song, X. (2010). Biomechanical considerations: evaluating scleral reinforcement materials for pathological myopia. Can J Ophthalmol 45, 252–255.CrossRefGoogle Scholar
  24. Yuan, Y., Zong, Y., Zheng, Q., Qian, G., Qian, X., Li, Y., Shao, W., and Gao, Q. (2016). The efficacy and safety of a novel posterior scleral reinforcement device in rabbits. Mater Sci Eng C Mater Biol Appl 62, 233–241.CrossRefGoogle Scholar
  25. Zhang, X.F., Qiao, L.Y., Li, X.X., Ma, N., Li, M., Guan, Z., Wang, H.Z., and Wang, N.L. (2017). A preliminary study on macular retinal and choroidal thickness and blood flow change after posterior scleral reinforcement by optical coherence tomography angiography (in Chinese). Zhonghua Yan Ke Za Zhi 53, 39–45.Google Scholar
  26. Zhu, S.Q., Wang, Q.M., Xue, A.Q., Zheng, L.Y., Su, Y.F., and Yu, A.Y. (2014). Posterior sclera reinforcement and phakic intraocular lens implantation for highly myopic amblyopia in children: a 3-year follow-up. Eye 28, 1310–1314.CrossRefGoogle Scholar
  27. Zhu, Z., Ji, X., Zhang, J., and Ke, G. (2009). Posterior scleral reinforcement in the treatment of macular retinoschisis in highly myopic patients. Clin Exp Ophthalmol 37, 660–663.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Liya Qiao
    • 1
    Email author
  • Xifang Zhang
    • 1
  • Catherine Jan
    • 1
    • 2
  • Xiaoxia Li
    • 1
  • Meng Li
    • 1
  • Huaizhou Wang
    • 1
  1. 1.Beijing Tongren Eye Center, Beijing Tongren HospitalCapital Medical University, Beijing Institute of Ophthalmology, Beijing Ophthalmology and Visual Sciences Key LaboratoryBeijingChina
  2. 2.Centre for Brain and Cognitive Sciences and School of Psychological and Cognitive SciencesPeking UniversityBeijingChina

Personalised recommendations