Advertisement

Science China Life Sciences

, Volume 62, Issue 2, pp 276–279 | Cite as

Enhancement of salinomycin production by ribosome engineering in Streptomyces albus

  • Dong Li
  • Jihui ZhangEmail author
  • Yuqing Tian
  • Huarong TanEmail author
Letter to the Editor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (2015CB150600) and the National Natural Science Foundation of China (31571281 and 31771378).

Supplementary material

11427_2018_9474_MOESM1_ESM.docx (212 kb)
Supporting Information

References

  1. Carata, E., Peano, C., Tredici, S.M., Ferrari, F., Talà, A., Corti, G., Bicciato, S., De Bellis, G., and Alifano, P. (2009). Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact 8, 18.CrossRefGoogle Scholar
  2. Gupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., and Lander, E.S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659.CrossRefGoogle Scholar
  3. Hesketh, A., and Ochi, K. (1997). A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. J Antibiot 50, 532–535.CrossRefGoogle Scholar
  4. Hosaka, T., Ohnishi-Kameyama, M., Muramatsu, H., Murakami, K., Tsurumi, Y., Kodani, S., Yoshida, M., Fujie, A., and Ochi, K. (2009). Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol 27, 462–464.CrossRefGoogle Scholar
  5. Li, Y., and Tan, H. (2017). Biosynthesis and molecular regulation of secondary metabolites in microorganisms. Sci China Life Sci 60, 935–938.CrossRefGoogle Scholar
  6. Liu, P., Zhu, H., Zheng, G., Jiang, W., and Lu, Y. (2017). Metabolic engineering of Streptomyces coelicolor for enhanced prodigiosins (RED) production. Sci China Life Sci 60, 948–957.CrossRefGoogle Scholar
  7. Lu, C., Zhang, X., Jiang, M., and Bai, L. (2016). Enhanced salinomycin production by adjusting the supply of polyketide extender units in Streptomyces albus. Metab Eng 35, 129–137.CrossRefGoogle Scholar
  8. Meng, X., Wang, W., Xie, Z., Li, P., Li, Y., Guo, Z., Lu, Y., Yang, J., Guan, K., Lu, Z., et al. (2017). Neomycin biosynthesis is regulated positively by AfsA-g and NeoR in Streptomyces fradiae CGMCC 4.7387. Sci China Life Sci 60, 980–991.CrossRefGoogle Scholar
  9. Niu, G., Zheng, J., and Tan, H. (2017). Biosynthesis and combinatorial biosynthesis of antifungal nucleoside antibiotics. Sci China Life Sci 60, 939–947.CrossRefGoogle Scholar
  10. Ochi, K., Okamoto, S., Tozawa, Y., Inaoka, T., Hosaka, T., Xu, J., and Kurosawa, K. (2004). Ribosome engineering and secondary metabolite production. Adv Appl Microbiol 56, 155–184.CrossRefGoogle Scholar
  11. Ochi, K. (2007). From microbial differentiation to ribosome engineering. Biosci Biotech Biochem 71, 1373–1386.CrossRefGoogle Scholar
  12. Tamehiro, N., Hosaka, T., Xu, J., Hu, H., Otake, N., and Ochi, K. (2003). Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ MicroBiol 69, 6412–6417.CrossRefGoogle Scholar
  13. Yin, S., Wang, X., Shi, M., Yuan, F., Wang, H., Jia, X., Yuan, F., Sun, J., Liu, T., Yang, K., et al. (2017). Improvement of oxytetracycline production mediated via cooperation of resistance genes in Streptomyces rimosus. Sci China Life Sci 60, 992–999.CrossRefGoogle Scholar
  14. Zhuo, J., Ma, B., Xu, J., Hu, W., Zhang, J., Tan, H., and Tian, Y. (2017). Reconstruction of a hybrid nucleoside antibiotic gene cluster based on scarless modification of large DNA fragments. Sci China Life Sci 60, 968–979.CrossRefGoogle Scholar
  15. Zou, Z., Du, D., Zhang, Y., Zhang, J., Niu, G., and Tan, H. (2014). A γ- butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 94, 490–505.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations