In-depth analysis of the genome of Trypanosoma evansi, an etiologic agent of surra

  • Lili Zheng
  • Ning Jiang
  • Xiaoyu Sang
  • Naiwen Zhang
  • Kai Zhang
  • Hongyu Chen
  • Na Yang
  • Ying Feng
  • Ran Chen
  • Xun Suo
  • Qijun ChenEmail author
Research Paper


Trypanosoma evansi is the causative agent of the animal trypanosomiasis surra, a disease with serious economic burden worldwide. The availability of the genome of its closely related parasite Trypanosoma brucei allows us to compare their genetic and evolutionarily shared and distinct biological features. The complete genomic sequence of the T. evansi YNB strain was obtained using a combination of genomic and transcriptomic sequencing, de novo assembly, and bioinformatic analysis. The genome size of the T. evansi YNB strain was 35.2 Mb, showing 96.59% similarity in sequence and 88.97% in scaffold alignment with T. brucei. A total of 8,617 protein-coding genes, accounting for 31% of the genome, were predicted. Approximately 1,641 alternative splicing events of 820 genes were identified, with a majority mediated by intron retention, which represented a major difference in post-transcriptional regulation between T. evansi and T. brucei. Disparities in gene copy number of the variant surface glycoprotein, expression site-associated genes, microRNAs, and RNA-binding protein were clearly observed between the two parasites. The results revealed the genomic determinants of T. evansi, which encoded specific biological characteristics that distinguished them from other related trypanosome species.


Trypanosoma trypanosomiasis genome annotation function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Professor Lun Zhaorong from Sun Yat-sen University for providing the Trypanosoma brucei strain. We sincerely appreciate the technical assistance of the technicians at the Key Laboratory of Zoonosis, Shenyang Agriculture University. This study was supported by grants of the National Key Research and Development Program of China (2017YFD0500400 and 2017YFD0501200), the National Natural Science Foundation of China (81420108023 and 81772219), and distinguished scientist grant from Shenyang Agricultural University.

Supplementary material

11427_2018_9473_MOESM1_ESM.pdf (6.1 mb)
Supplementary material, approximately 6.14 MB.


  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403–410.CrossRefGoogle Scholar
  2. Altschul, S., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.CrossRefGoogle Scholar
  3. Archer, S.K., Luu, V.D., de Queiroz, R.A., Brems, S., and Clayton, C. (2009). Trypanosoma brucei PUF9 regulates mRNAs for proteins involved in replicative processes over the cell cycle. PLoS Pathog 5, e1000565.CrossRefGoogle Scholar
  4. Berriman, M., Ghedin, E., Hertz-Fowler, C., Blandin, G., Renauld, H., Bartholomeu, D.C., Lennard, N.J., Caler, E., Hamlin, N.E., Haas, B., et al. (2005). The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422.CrossRefGoogle Scholar
  5. Birhanu, H., Fikru, R., Said, M., Kidane, W., Gebrehiwot, T., Hagos, A., Alemu, T., Dawit, T., Berkvens, D., Goddeeris, B.M., et al. (2015). Epidemiology of Trypanosoma evansi and Trypanosoma vivax in domestic animals from selected districts of Tigray and Afar regions, Northern Ethiopia. Parasit Vectors 8, 212.CrossRefGoogle Scholar
  6. Birney, E., Clamp, M., and Durbin, R. (2004). GeneWise and Genomewise. Genome Res 14, 988–995.CrossRefGoogle Scholar
  7. Blencowe, B.J. (2006). Alternative splicing: new insights from global analyses. Cell 126, 37–47.CrossRefGoogle Scholar
  8. Borst, P. (2002). Antigenic variation and allelic exclusion. Cell 109, 5–8.CrossRefGoogle Scholar
  9. Brenndörfer, M., and Boshart, M. (2010). Selection of reference genes for mRNA quantification in Trypanosoma brucei. Mol Biochem Parasitol 172, 52–55.CrossRefGoogle Scholar
  10. Burge, C., and Karlin, S. (1997). Prediction of complete gene structures in human genomic DNA. J Mol Biol 268, 78–94.CrossRefGoogle Scholar
  11. Carnes, J., Anupama, A., Balmer, O., Jackson, A., Lewis, M., Brown, R., Cestari, I., Desquesnes, M., Gendrin, C., Hertz-Fowler, C., et al. (2015). Genome and phylogenetic analyses of Trypanosoma evansi reveal extensive similarity to T. brucei and multiple independent origins for dyskinetoplasty. PLoS Negl Trop Dis 9, e3404.CrossRefGoogle Scholar
  12. Cech, T.R., and Steitz, J.A. (2014). The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157, 77–94.CrossRefGoogle Scholar
  13. Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M., and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676.CrossRefGoogle Scholar
  14. Desquesnes, M., Kamyingkird, K., Pruvot, M., Kengradomkij, C., Bossard, G., Sarataphan, N., and Jittapalapong, S. (2009). Antibody-ELISA for Trypanosoma evansi: application in a serological survey of dairy cattle, Thailand, and validation of a locally produced antigen. Prevent Vet Med 90, 233–241.CrossRefGoogle Scholar
  15. El-Sayed, N.M., Myler, P.J., Bartholomeu, D.C., Nilsson, D., Aggarwal, G., Tran, A.N., Ghedin, E., Worthey, E.A., Delcher, A.L., Blandin, G., et al. (2005). The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309, 409–415.CrossRefGoogle Scholar
  16. Fadda, A., Ryten, M., Droll, D., Rojas, F., Färber, V., Haanstra, J.R., Merce, C., Bakker, B.M., Matthews, K., and Clayton, C. (2014). Transcriptome-wide analysis of trypanosome mRNA decay reveals complex degradation kinetics and suggests a role for co-transcriptional degradation in determining mRNA levels. Mol Microbiol 94, 307–326.CrossRefGoogle Scholar
  17. Gazestani, V.H., Lu, Z., and Salavati, R. (2014). Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genomewide? Trends Parasitol 30, 234–240.CrossRefGoogle Scholar
  18. Glover, L., Hutchinson, S., Alsford, S., McCulloch, R., Field, M.C., and Horn, D. (2013). Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell Microbiol 15, 1984–1993.CrossRefGoogle Scholar
  19. Grab, D.J., Webster, P., Ito, S., Fish, W.R., Verjee, Y., and Lonsdale-Eccles, J.D. (1987). Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes. J Cell Biol 105, 737–746.CrossRefGoogle Scholar
  20. Hahn, S., and Young, E.T. (2011). Transcriptional regulation in Saccharomyces cerevisiae: Transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705–736.CrossRefGoogle Scholar
  21. Iseli, C., Jongeneel, C.V. and Bucher, P. (1999). ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999, 138–148.Google Scholar
  22. Ivens, A.C., Peacock, C.S., Worthey, E.A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M.A., Adlem, E., Aert, R., et al. (2005). The genome of the kinetoplastid parasite, Leishmania major. Science 309, 436–442.CrossRefGoogle Scholar
  23. Jensen, R.E., Simpson, L., and Englund, P.T. (2008). What happens when Trypanosoma brucei leaves Africa. Trends Parasitol 24, 428–431.CrossRefGoogle Scholar
  24. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110, 462–467.CrossRefGoogle Scholar
  25. Kamena, F., Tamborrini, M., Liu, X., Kwon, Y.U., Thompson, F., Pluschke, G., and Seeberger, P.H. (2008). Synthetic GPI array to study antitoxic malaria response. Nat Chem Biol 4, 238–240.CrossRefGoogle Scholar
  26. Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12, 357–360.CrossRefGoogle Scholar
  27. Lanham, S.M., and Godfrey, D.G. (1970). Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol 28, 521–534.CrossRefGoogle Scholar
  28. Li, B. (2015). DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. Eukaryot Cell 14, 196–205.CrossRefGoogle Scholar
  29. Liu, S., Zhou, X., Hao, L., Piao, X., Hou, N., and Chen, Q. (2017). Genome-wide transcriptome analysis reveals extensive alternative splicing events in the protoscoleces of Echinococcus granulosus and Echinococcus multilocularis. Front Microbiol 8, 929.CrossRefGoogle Scholar
  30. Lunde, B.M., Moore, C., and Varani, G. (2007). RNA-binding proteins: modular design for efficient function. Nat Rev Mol Cell Biol 8, 479–490.CrossRefGoogle Scholar
  31. Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 18.CrossRefGoogle Scholar
  32. Mallick, B., Ghosh, Z., and Chakrabarti, J. (2008). MicroRNA switches in Trypanosoma brucei. Biochem BioPhys Res Commun 372, 459–463.CrossRefGoogle Scholar
  33. Manna, P.T., Boehm, C., Leung, K.F., Natesan, S.K., and Field, M.C. (2014). Life and times: synthesis, trafficking, and evolution of VSG. Trends Parasitol 30, 251–258.CrossRefGoogle Scholar
  34. McCulloch, R., and Field, M.C. (2015). Quantitative sequencing confirms VSG diversity as central to immune evasion by Trypanosoma brucei. Trends Parasitol 31, 346–349.CrossRefGoogle Scholar
  35. Mcdowell, M.A., Ransom, D.M., and Bangs, J.D. (1998). Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. Biochem J 335, 681–689.CrossRefGoogle Scholar
  36. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303.CrossRefGoogle Scholar
  37. Mestdagh, P., Van Vlierberghe, P., De Weer, A., Muth, D., Westermann, F., Speleman, F., and Vandesompele, J. (2009). A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol 10, R64.CrossRefGoogle Scholar
  38. Mistry, J., Finn, R.D., Eddy, S.R., Bateman, A., and Punta, M. (2013). Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41, e121.CrossRefGoogle Scholar
  39. Mugnier, M.R., Cross, G.A.M., and Papavasiliou, F.N. (2015). The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science 347, 1470–1473.CrossRefGoogle Scholar
  40. Nagamune, K., Nozaki, T., Maeda, Y., Ohishi, K., Fukuma, T., Hara, T., Schwarz, R.T., Sutterlin, C., Brun, R., Riezman, H., et al. (2000). Critical roles of glycosylphosphatidylinositol for Trypanosoma brucei. Proc Natl Acad Sci USA 97, 10336–10341.CrossRefGoogle Scholar
  41. Nilsson, D., Gunasekera, K., Mani, J., Osteras, M., Farinelli, L., Baerlocher, L., Roditi, I., and Ochsenreiter, T. (2010). Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei. PLoS Pathog 6, e1001037.CrossRefGoogle Scholar
  42. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290–295.CrossRefGoogle Scholar
  43. Pinger, J., Chowdhury, S., and Papavasiliou, F.N. (2017). Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat Commun 8, 828.CrossRefGoogle Scholar
  44. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Res 33, W116–W120.CrossRefGoogle Scholar
  45. Rettig, J., Wang, Y., Schneider, A., and Ochsenreiter, T. (2012). Dual targeting of isoleucyl-tRNA synthetase in Trypanosoma brucei is mediated through alternative trans-splicing. Nucleic Acids Res 40, 1299–1306.CrossRefGoogle Scholar
  46. Richardson, J.B., Lee, K.Y., Mireji, P., Enyaru, J., Sistrom, M., Aksoy, S., Zhao, H., and Caccone, A. (2017). Genomic analyses of African Trypanozoon strains to assess evolutionary relationships and identify markers for strain identification. PLoS Negl Trop Dis 11, e0005949.CrossRefGoogle Scholar
  47. Siegel, T.N., Hekstra, D.R., Wang, X., Dewell, S., and Cross, G.A.M. (2010). Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 38, 4946–4957.CrossRefGoogle Scholar
  48. Spitz, F., and Furlong, E.E.M. (2012). Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13, 613–626.CrossRefGoogle Scholar
  49. Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., and Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34, W435–W439.CrossRefGoogle Scholar
  50. Stijlemans, B., Baral, T.N., Guilliams, M., Brys, L., Korf, J., Drennan, M., Van Den Abbeele, J., De Baetselier, P., and Magez, S. (2007). A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology. J Immunol 179, 4003–4014.CrossRefGoogle Scholar
  51. Tarailo-Graovac, M., and Chen, N. (2009). Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4: Unit 4.10.Google Scholar
  52. Taylor, D.R. and Hooper, N.M. (2011). GPI-Anchored Proteins in Health and Disease (Springer New York).CrossRefGoogle Scholar
  53. Taylor, J.E. and Rudenko, G. (2006). Switching trypanosome coats: what’s in the wardrobe? Trends Genet 22, 614–620.CrossRefGoogle Scholar
  54. Thiel, T., Michalek, W., Varshney, R.K., and Graner, A. (2003). Exploiting EST databases for the development and characterization of genederived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106, 411–422.CrossRefGoogle Scholar
  55. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111.CrossRefGoogle Scholar
  56. Yang, C., Suo, X., Huang, X., Zhang, G., Jia, Y., Wang, Q., and Shen, J. (2007). Protection of mice against homologous or heterologous infections with antiserum mixture to the predominant variable antigen type repertoire of Trypanosoma evansi YNB stock. Exp Parasitol 116, 53–58.CrossRefGoogle Scholar
  57. Xu, Z., and Wang, H. (2007). LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35, W265–W268.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lili Zheng
    • 1
    • 2
  • Ning Jiang
    • 1
  • Xiaoyu Sang
    • 1
  • Naiwen Zhang
    • 1
  • Kai Zhang
    • 1
  • Hongyu Chen
    • 1
  • Na Yang
    • 1
  • Ying Feng
    • 1
  • Ran Chen
    • 1
  • Xun Suo
    • 3
  • Qijun Chen
    • 1
    Email author
  1. 1.Key Laboratory of Zoonosis, College of Animal Science and Veterinary MedicineShenyang Agricultural UniversityShenyangChina
  2. 2.Department of Food ScienceShenyang Agricultural UniversityShenyangChina
  3. 3.Department of Parasitology, College of Veterinary MedicineChinese Agricultural UniversityBeijingChina

Personalised recommendations