Advertisement

Science China Life Sciences

, Volume 62, Issue 9, pp 1168–1177 | Cite as

Visualizing DC morphology and T cell motility to characterize DC-T cell encounters in mouse lymph nodes under mTOR inhibition

  • Qiaoya Lin
  • Zheng Liu
  • Meijie Luo
  • Hao Zheng
  • Sha Qiao
  • Chenlu Han
  • Deqiang Deng
  • Zhan Fan
  • Yafang Lu
  • Zhihong Zhang
  • Qingming LuoEmail author
Research Paper
  • 68 Downloads

Abstract

Mammalian target of rapamycin (mTOR), a serine/threonine kinase orchestrating cellular metabolism, is a crucial immune system regulator. However, it remains unclear how mTOR regulates dendritic cell (DC) function in vivo, especially DC-T cell encounters, a critical step for initiating adaptive immune responses. We dynamically visualized DC-T contacts in mouse lymph node using confocal microscopy and established an encounter model to characterize the effect of mTOR inhibition on DC-T cell encounters using DC morphology. Quantitative data showed mTOR inhibition via rapamycin altered DC shape, with an increased form factor (30.17%) and decreased cellular surface area (20.36%) and perimeter (22.43%), which were associated with Cdc42 protein downregulation (52.71%). Additionally, DCs adopted a similar morphological change with Cdc42 inhibition via ZCL278 as that observed with mTOR inhibition. These morphologically altered DCs displayed low encounter rates with T cells. Time-lapse imaging data of T cell motility supported the simulated result of the encounter model, where antigen-specific T cells appeared to reduce arrest in the lymph nodes of rapamycin-pretreated mice relative to the untreated group. Therefore, mTOR inhibition altered DC morphology in vivo and decreased the DC-T cell encounter rate, as well as Cdc42 inhibition. By establishing an encounter model, our study provides an intuitive approach for the early prediction of DC function through morphological quantification of form factor and area.

Keywords

mTOR intravital imaging DC-T contacts Cdc42 inhibition 

Notes

Acknowledgements

We thank the Optical Bioimaging Core Facility of WNLO-HUST for the support in data acquisition. This work was supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (61721092), the Major Research Plan of the National Natural Science Foundation of China (91542000, 91442201), National Science Fund for Distinguished Young Scholars (81625012), National Natural Science Foundation of China (81501593), and the Director Fund of WNLO.

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplementary material

11427_2018_9470_MOESM1_ESM.docx (4.3 mb)
Visualizing DC morphology and T cell motility to characterize DC-T cell encounters in mouse lymph nodes under mTOR inhibition

References

  1. Abbas, A.K., Lichtman, A.H., and Pillai, S. (2014). Cellular and Molecular Immunology, 8th ed. (Philadelphia, PA: Elsevier).Google Scholar
  2. Alieva, M., Ritsma, L., Giedt, R.J., Weissleder, R., and van Rheenen, J. (2014). Imaging windows for long-term intravital imaging. Intra Vital 3, e29917.Google Scholar
  3. Amiel, E., Everts, B., Freitas, T.C., King, I.L., Curtis, J.D., Pearce, E.L., and Pearce, E.J. (2012). Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice. J Immunol 189, 2151–2158.CrossRefGoogle Scholar
  4. Anandasabapathy, N., Feder, R., Mollah, S., Tse, S.W., Longhi, M.P., Mehandru, S., Matos, I., Cheong, C., Ruane, D., Brane, L., et al. (2014). Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. J Exp Med 211, 1875–1891.CrossRefGoogle Scholar
  5. Blattman, J.N., Antia, R., Sourdive, D.J.D., Wang, X., Kaech, S.M., Murali-Krishna, K., Altman, J.D., and Ahmed, R. (2002). Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195, 657–664.CrossRefGoogle Scholar
  6. Bousso, P. (2008). T-cell activation by dendritic cells in the lymph node: lessons from the movies. Nat Rev Immunol 8, 675–684.CrossRefGoogle Scholar
  7. Bousso, P., and Robey, E. (2003). Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4, 579–585.CrossRefGoogle Scholar
  8. Cahalan, M.D., and Parker, I. (2008). Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs. Annu Rev Immunol 26, 585–626.CrossRefGoogle Scholar
  9. Friesland, A., Zhao, Y., Chen, Y.H., Wang, L., Zhou, H., and Lu, Q. (2013). Small molecule targeting Cdc42-intersectin interaction disrupts Golgi organization and suppresses cell motility. Proc Natl Acad Sci USA 110, 1261–1266.CrossRefGoogle Scholar
  10. Germain, R.N., Miller, M.J., Dustin, M.L., and Nussenzweig, M.C. (2006). Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 6, 497–507.CrossRefGoogle Scholar
  11. Germain, R.N., Robey, E.A., and Cahalan, M.D. (2012). A decade of imaging cellular motility and interaction dynamics in the immune system. Science 336, 1676–1681.CrossRefGoogle Scholar
  12. Hackstein, H., Taner, T., Logar, A.J., and Thomson, A.W. (2002). Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood 100, 1084–1087.CrossRefGoogle Scholar
  13. Hackstein, H., Taner, T., Zahorchak, A.F., Morelli, A.E., Logar, A.J., Gessner, A., and Thomson, A.W. (2003). Rapamycin inhibits IL-4–induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood 101, 4457–4463.CrossRefGoogle Scholar
  14. Haidinger, M., Poglitsch, M., Geyeregger, R., Kasturi, S., Zeyda, M., Zlabinger, G.J., Pulendran, B., Hörl, W.H., Säemann, M.D., and Weichhart, T. (2010). A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation. J Immunol 185, 3919–3931.CrossRefGoogle Scholar
  15. Holst, K., Guseva, D., Schindler, S., Sixt, M., Braun, A., Chopra, H., Pabst, O., and Ponimaskin, E. (2015). The serotonin receptor 5-HT7R regulates the morphology and migratory properties of dendritic cells. J Cell Sci 128, 2866–2880.CrossRefGoogle Scholar
  16. Hormann, K., and Agathos, A. (2001). The point in polygon problem for arbitrary polygons. Comput Geometry 20, 131–144.CrossRefGoogle Scholar
  17. Iqbal, A.J., McNeill, E., Kapellos, T.S., Regan-Komito, D., Norman, S., Burd, S., Smart, N., Machemer, D.E.W., Stylianou, E., McShane, H., et al. (2014). Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 124, e33–e44.CrossRefGoogle Scholar
  18. Kawa, A., Stahlhut, M., Berezin, A., Bock, E., and Berezin, V. (1998). A simple procedure for morphometric analysis of processes and growth cones of neurons in culture using parameters derived from the contour and convex hull of the object. J Neurosci Methods 79, 53–64.CrossRefGoogle Scholar
  19. Kitano, M., Yamazaki, C., Takumi, A., Ikeno, T., Hemmi, H., Takahashi, N., Shimizu, K., Fraser, S.E., Hoshino, K., Kaisho, T., et al. (2016). Imaging of the cross-presenting dendritic cell subsets in the skindraining lymph node. Proc Natl Acad Sci USA 113, 1044–1049.CrossRefGoogle Scholar
  20. Krummel, M.F., Bartumeus, F., and Gérard, A. (2016). T cell migration, search strategies and mechanisms. Nat Rev Immunol 16, 193–201.CrossRefGoogle Scholar
  21. Lindquist, R.L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M.L., and Nussenzweig, M.C. (2004). Visualizing dendritic cell networks in vivo. Nat Immunol 5, 1243–1250.CrossRefGoogle Scholar
  22. Liu, Z., Yang, F., Zheng, H., Fan, Z., Qiao, S., Liu, L., Tao, J., Luo, Q., and Zhang, Z. (2018). Visualization of T cell-regulated monocyte clusters mediating keratinocyte death in acquired cutaneous immunity. J Invest Dermatol 138, 1328–1337.CrossRefGoogle Scholar
  23. Mempel, T.R., Henrickson, S.E., and Von Andrian, U.H. (2004). T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159.CrossRefGoogle Scholar
  24. Miller, M.J., Safrina, O., Parker, I., and Cahalan, M.D. (2004). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200, 847–856.CrossRefGoogle Scholar
  25. Miller, M.J., Wei, S.H., Parker, I., and Cahalan, M.D. (2002). Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873.CrossRefGoogle Scholar
  26. Ohtani, M., Hoshii, T., Fujii, H., Koyasu, S., Hirao, A., and Matsuda, S. (2012). Cutting edge: mTORC1 in intestinal CD11c+CD11b+ dendritic cells regulates intestinal homeostasis by promoting IL-10 production. J Immunol 188, 4736–4740.CrossRefGoogle Scholar
  27. Qi, S., Li, H., Lu, L., Qi, Z., Liu, L., Chen, L., Shen, G., Fu, L., Luo, Q., and Zhang, Z. (2016). Long-term intravital imaging of the multicolorcoded tumor microenvironment during combination immunotherapy. eLife 5, e14756.Google Scholar
  28. Robertson, J.M., Jensen, P.E., and Evavold, B.D. (2000). DO11.10 and OTII T cells recognize a C-terminal ovalbumin 323–339 epitope. J Immunol 164, 4706–4712.CrossRefGoogle Scholar
  29. Sokac, A.M., Co, C., Taunton, J., and Bement, W. (2003). Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nat Cell Biol 5, 727–732.CrossRefGoogle Scholar
  30. Sordi, V., Bianchi, G., Buracchi, C., Mercalli, A., Marchesi, F., D’Amico, G., Yang, C.H., Luini, W., Vecchi, A., Mantovani, A., et al. (2006). Differential effects of immunosuppressive drugs on chemokine receptor CCR7 in human monocyte-derived dendritic cells: selective upregulation by rapamycin. Transplantation 82, 826–834.CrossRefGoogle Scholar
  31. Speranza, L., Giuliano, T., Volpicelli, F., De Stefano, M.E., Lombardi, L., Chambery, A., Lacivita, E., Leopoldo, M., Bellenchi, G.C., di Porzio, U., et al. (2015). Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics. Front Behav Neurosci 9, 62.CrossRefGoogle Scholar
  32. Stein, J.V. (2015). T cell motility as modulator of interactions with dendritic cells. Front Immunol 6.Google Scholar
  33. Steinman, R.M. (2012). Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 30, 1–22.CrossRefGoogle Scholar
  34. Sukhbaatar, N., Hengstschläger, M., and Weichhart, T. (2016). mTORmediated regulation of dendritic cell differentiation and function. Trends Immunol 37, 778–789.Google Scholar
  35. Thomson, A.W., Turnquist, H.R., and Raimondi, G. (2009). Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9, 324–337.CrossRefGoogle Scholar
  36. Tolić-Nørrelykke, I.M., and Wang, N. (2005). Traction in smooth muscle cells varies with cell spreading. J Biomech 38, 1405–1412.CrossRefGoogle Scholar
  37. Tomura, M., Hata, A., Matsuoka, S., Shand, F.H.W., Nakanishi, Y., Ikebuchi, R., Ueha, S., Tsutsui, H., Inaba, K., Matsushima, K., et al. (2014). Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci Rep 4, 6030.CrossRefGoogle Scholar
  38. Weichhart, T., Costantino, G., Poglitsch, M., Rosner, M., Zeyda, M., Stuhlmeier, K.M., Kolbe, T., Stulnig, T.M., Hörl, W.H., Hengstschläger, M., et al. (2008). The TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity 29, 565–577.CrossRefGoogle Scholar
  39. Weichhart, T., Haidinger, M., Katholnig, K., Kopecky, C., Poglitsch, M., Lassnig, C., Rosner, M., Zlabinger, G.J., Hengstschläger, M., Müller, M., et al. (2011). Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood 117, 4273–4283.CrossRefGoogle Scholar
  40. Yang, T., Zhu, L., Zhai, Y., Zhao, Q., Peng, J., Zhang, H., Yang, Z., Zhang, L., Ding, W., and Zhao, Y. (2016). TSC1 controls IL-1β expression in macrophages via mTORC1-dependent C/EBPβ pathway. Cell Mol Immunol 13, 640–650.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Qiaoya Lin
    • 1
    • 2
  • Zheng Liu
    • 1
    • 2
  • Meijie Luo
    • 1
    • 2
  • Hao Zheng
    • 1
    • 2
  • Sha Qiao
    • 1
    • 2
  • Chenlu Han
    • 1
    • 2
  • Deqiang Deng
    • 1
    • 2
  • Zhan Fan
    • 1
    • 2
  • Yafang Lu
    • 1
    • 2
  • Zhihong Zhang
    • 1
    • 2
  • Qingming Luo
    • 1
    • 2
    Email author
  1. 1.Britton Chance Center for Biomedical PhotonicsWuhan National Laboratory for Optoelectronics-Huazhong University of Science and TechnologyWuhanChina
  2. 2.MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering SciencesHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations