Advertisement

Science China Life Sciences

, Volume 62, Issue 4, pp 544–552 | Cite as

The deubiquitinating gene Usp29 is dispensable for fertility in male mice

  • Zhu Huang
  • Manan Khan
  • Jianze Xu
  • Teka Khan
  • Hui Ma
  • Ranjha Khan
  • Hafiz Muhammad Jafar Hussain
  • Xiaohua JiangEmail author
  • Qinghua ShiEmail author
Research Paper
  • 28 Downloads

Abstract

The balanced actions between ubiquitination and deubiquitination precisely control the levels of various proteins vital for spermatogenesis. Ubiquitin-specific processing proteases (USPs) are the largest family of deubiquitinatingenzymes(DUBs), containing more than 50 members. So far, the functions of only a few USPs in male fertility have been studied, the roles of the majority are yet unknown. The present study aimed to explore the function of Usp29 (ubiquitin-specific protease 29) in male fertility. We found that Usp29 showed predominant expression in mouse testis, and its mRNA expression started to increase at 14 days postpartum (dpp), with a peak at 28 and 35 dpp. Using CRISPR/Cas9 technology, we generated Usp29 knockout mice (Usp29-/-). Usp29-/- mice exhibited no overt developmental anomalies. Further examination revealed that Usp29-/- mice had normal fertility and showed no detectable difference in the testis/body weight ratio, testicular and epididymal histology as well as epididymal sperm count from the wild-type littermates. Moreover, Usp29 is not a pseudogene in mice. Taken together, our study first reported that though Usp29 is predominantly expressed in the testis, it is not essential for male fertility in mice.

Keywords

Usp29 mouse testis fertility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof. Cheng Deng from Nanjing Normal University and Prof. Zhuqing Shao from Nanjing University for comments. This work was supported by the National Key Research and Developmental Program of China (2018YFC1004700 and 2016YFC1000600), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000), the National Natural Science Foundation of China (31401953, 31630050, 31890780, 31871514 and 81571495) and Major Program of Development Foundation of Hefei Centre for Physical Science and Technology (2018ZYFX005).

Supplementary material

11427_2018_9469_MOESM1_ESM.docx (115 kb)
Table S1 Primers used in PCR

References

  1. Agarwal, A., and Said, T.M. (2003). Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 9, 331–345.CrossRefGoogle Scholar
  2. Amerik, A.Y., and Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta Mol Cell Res 1695, 189–207.CrossRefGoogle Scholar
  3. Aston, K.I., Krausz, C., Laface, I., Ruiz-Castané, E., and Carrell, D.T. (2010). Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25, 1383–1397.CrossRefGoogle Scholar
  4. Bedard, N., Yang, Y., Gregory, M., Cyr, D.G., Suzuki, J., Yu, X., Chian, R. C., Hermo, L., O’Flaherty, C., Smith, C.E., et al. (2011). Mice lacking the USP2 deubiquitinating enzyme have severe male subfertility associated with defects in fertilization and sperm motility. Biol Reprod 85, 594–604.CrossRefGoogle Scholar
  5. Berruti, G., and Paiardi, C. (2015). USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET. Reproduction 149, 633–644.CrossRefGoogle Scholar
  6. Bose, R., Manku, G., Culty, M., and Wing, S.S. (2014). Ubiquitin-proteasome system in spermatogenesis. Adv Exp Med Biol 759, 181–213.CrossRefGoogle Scholar
  7. Crimmins, S., Sutovsky, M., Chen, P.C., Huffman, A., Wheeler, C., Swing, D.A., Roth, K., Wilson, J., Sutovsky, P., and Wilson, S. (2009). Transgenic rescue of ataxia mice reveals a male-specific sterility defect. Dev Biol 325, 33–42.CrossRefGoogle Scholar
  8. Habu, T., Wakabayashi, N., Yoshida, K., Yomogida, K., Nishimune, Y., and Morita, T. (2004). p53 Protein interacts specifically with the meiosisspecific mammalian RecA-like protein DMC1 in meiosis. Carcinogenesis 25, 889–893.CrossRefGoogle Scholar
  9. He, H., and Kim, J. (2014). Regulation and function of the Peg3 imprinted domain. Genomics Inform 12, 105–113.CrossRefGoogle Scholar
  10. He, H., Ye, A., and Kim, J. (2016). Transcriptional truncation of the long coding imprinted gene Usp29. PLoS ONE 11, e0158004.CrossRefGoogle Scholar
  11. Hou, C.C., and Yang, W.X. (2013). New insights to the ubiquitinproteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 40, 3213–3230.CrossRefGoogle Scholar
  12. Jiang, X., Ma, T., Zhang, Y., Zhang, H., Yin, S., Zheng, W., Wang, L., Wang, Z., Khan, M., Sheikh, S.W., Bukhari, I., Iqbal, F., Cooke, H.J., and Shi, Q. (2015). Specific deletion of Cdh2 in Sertoli cells leads to altered meiotic progression and subfertility of mice. Biol Reprod 92, 79.CrossRefGoogle Scholar
  13. Jiang, X., Zhang, H., Yin, S., Zhang, Y., Yang, W., Zheng, W., Wang, L., Wang, Z., Bukhari, I., Cooke, H.J., et al. (2014). Specific deficiency of Plzf paralog, Zbtb20, in Sertoli cells does not affect spermatogenesis and fertility in mice. Sci Rep 4, 7062.CrossRefGoogle Scholar
  14. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., and Jermiin, L.S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Meth 14, 587–589.CrossRefGoogle Scholar
  15. Khan, M., Jabeen, N., Khan, T., Hussain, H.M.J., Ali, A., Khan, R., Jiang, L., Li, T., Tao, Q., Zhang, X., et al. (2018). The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Sci Rep 8, 4975.CrossRefGoogle Scholar
  16. Kim, J., Bergmann, A., Choo, J.H., and Stubbs, L. (2007). Genomic organization and imprinting of the Peg3 domain in bovine. Genomics 90, 85–92.CrossRefGoogle Scholar
  17. Kim, J., Noskov, V.N., Li, X.C., Bergmann, A., Ren, X.J., Warth, T., Richardson, P., Kouprina, N., and Stubbs, L. (2000). Discovery of a novel, paternally expressed ubiquitin-specific processing protease gene through comparative analysis of an imprinted region of mouse chromosome 7 and human chromosome 19q13.4. Genome Res 10, 1138–1147.CrossRefGoogle Scholar
  18. Kim, Y.K., Kim, Y.S., Yoo, K.J., Lee, H.J., Lee, D.R., Yeo, C.Y., and Baek, K.H. (2007). The expression of Usp42 during embryogenesis and spermatogenesis in mouse. Gene Exp Patt 7, 143–148.CrossRefGoogle Scholar
  19. Koerver, L., Melzer, J., Roca, E.A., Teichert, D., Glatter, T., Arama, E., and Broemer, M. (2016). The de-ubiquitylating enzyme DUBA is essential for spermatogenesis in Drosophila. Cell Death Differ 23, 2019–2030.CrossRefGoogle Scholar
  20. Komander, D. (2009). The emerging complexity of protein ubiquitination. Biochem Soc Trans 37, 937–953.CrossRefGoogle Scholar
  21. Komander, D., Clague, M.J., and Urbé, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550–563.CrossRefGoogle Scholar
  22. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 33, 1870–1874.CrossRefGoogle Scholar
  23. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.CrossRefGoogle Scholar
  24. Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.CrossRefGoogle Scholar
  25. Lin, Y.W., Hsu, T.H., and Yen, P.H. (2011). Localization of ubiquitin specific protease 26 at blood-testis barrier and near Sertoli cell-germ cell interface in mouse testes. Int J Androl 34, e368–e377.CrossRefGoogle Scholar
  26. Liu, J., Chung, H.J., Vogt, M., Jin, Y., Malide, D., He, L., Dundr, M., and Levens, D. (2011). JTV1 co-activates FBP to induce USP29 transcription and stabilize p53 in response to oxidative stress. EMBO J 30, 846–858.CrossRefGoogle Scholar
  27. Liu, Y.L., Zheng, J., Mi, Y.J., Zhao, J., and Tian, Q.B. (2018). The impacts of nineteen mutations on the enzymatic activity of USP26. Gene 641, 292–296.CrossRefGoogle Scholar
  28. Lu, C., Kim, J., and Fuller, M.T. (2013). The polyubiquitin gene Ubi-p63E is essential for male meiotic cell cycle progression and germ cell differentiation in Drosophila. Development 140, 3522–3531.CrossRefGoogle Scholar
  29. Luddi, A., Margollicci, M., Gambera, L., Serafini, F., Cioni, M., De Leo, V., Balestri, P., and Piomboni, P. (2009). Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med 360, 881–885.CrossRefGoogle Scholar
  30. Manku, G., Wing, S.S., and Culty, M. (2012). Expression of the ubiquitin proteasome system in neonatal rat gonocytes and spermatogonia: role in gonocyte differentiation. Biol Reprod 87, 44.CrossRefGoogle Scholar
  31. Martín, Y., Cabrera, E., Amoedo, H., Hernández-Pérez, S., Domínguez-Kelly, R., and Freire, R. (2015). USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene 34, 1058–1063.CrossRefGoogle Scholar
  32. Mashiko, D., Fujihara, Y., Satouh, Y., Miyata, H., Isotani, A., and Ikawa, M. (2013). Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep 3, 3355.CrossRefGoogle Scholar
  33. Mosbech, A., Lukas, C., Bekker-Jensen, S., and Mailand, N. (2013). The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J Biol Chem 288, 16579–16587.CrossRefGoogle Scholar
  34. Naito, Y., Hino, K., Bono, H., and Ui-Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123.CrossRefGoogle Scholar
  35. Nakamura, N. (2013). Ubiquitination regulates the morphogenesis and function of sperm organelles. Cells 2, 732–750.CrossRefGoogle Scholar
  36. Napoletano, F., Gibert, B., Yacobi-Sharon, K., Vincent, S., Favrot, C., Mehlen, P., Girard, V., Teil, M., Chatelain, G., Walter, L., et al. (2017). p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis. PLoS Genet 13, e1007024.CrossRefGoogle Scholar
  37. Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQTREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268–274.CrossRefGoogle Scholar
  38. Niendorf, S., Oksche, A., Kisser, A., Löhler, J., Prinz, M., Schorle, H., Feller, S., Lewitzky, M., Horak, I., and Knobeloch, K.P. (2007). Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 27, 5029–5039.CrossRefGoogle Scholar
  39. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2-Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490.CrossRefGoogle Scholar
  40. Sadowski, M., Suryadinata, R., Tan, A.R., Roesley, S.N.A., and Sarcevic, B. (2012). Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life 64, 136–142.CrossRefGoogle Scholar
  41. Shao, Z.Q., Xue, J.Y., Wu, P., Zhang, Y.M., Wu, Y., Hang, Y.Y., Wang, B., and Chen, J.Q. (2016). Large-scale analyses of angiosperm nucleotidebinding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170, 2095–2109.CrossRefGoogle Scholar
  42. Shen, B., Zhang, W., Zhang, J., Zhou, J., Wang, J., Chen, L., Wang, L., Hodgkins, A., Iyer, V., Huang, X., et al. (2014). Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11, 399–402.CrossRefGoogle Scholar
  43. Shinagawa, T., Huynh, L.M., Takagi, T., Tsukamoto, D., Tomaru, C., Kwak, H.G., Dohmae, N., Noguchi, J., and Ishii, S. (2015). Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development 142, 1287–1292.CrossRefGoogle Scholar
  44. Sjoblom, T., and Lahdetie, J. (1996). Expression of p53 in normal and gamma-irradiated rat testis suggests a role for p53 in meiotic recombination and repair. Oncogene 12, 2499–2505.Google Scholar
  45. Stouffs, K., Lissens, W., Tournaye, H., Van Steirteghem, A., and Liebaers, I. (2005). Possible role of USP26 in patients with severely impaired spermatogenesis. Eur J Hum Genet 13, 336–340.CrossRefGoogle Scholar
  46. Suresh, B., Lee, J., Hong, S.H., Kim, K.S., and Ramakrishna, S. (2015). The role of deubiquitinating enzymes in spermatogenesis. Cell Mol Life Sci 72, 4711–4720.CrossRefGoogle Scholar
  47. Typas, D., Luijsterburg, M.S., Wiegant, W.W., Diakatou, M., Helfricht, A., Thijssen, P.E., van den Broek, B., van de Broek, B., Mullenders, L.H., and van Attikum, H. (2015). The de-ubiquitylating enzymes USP26 and USP37 regulate homologous recombination by counteracting RAP80. Nucleic Acids Res 43, 6919–6933.CrossRefGoogle Scholar
  48. Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.CrossRefGoogle Scholar
  49. Wang, P.J., McCarrey, J.R., Yang, F., and Page, D.C. (2001). An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27, 422–426.CrossRefGoogle Scholar
  50. Wright, A., Reiley, W.W., Chang, M., Jin, W., Lee, A.J., Zhang, M., and Sun, S.C. (2007). Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev Cell 13, 705–716.CrossRefGoogle Scholar
  51. Yin, S., Jiang, X., Jiang, H., Gao, Q., Wang, F., Fan, S., Khan, T., Jabeen, N., Khan, M., Ali, A., et al. (2017). Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development 144, 2165–2174.CrossRefGoogle Scholar
  52. Zhang, J., Tian, H., Huo, Y.W., Zhou, D.X., Wang, H.X., Wang, L.R., Zhang, Q.Y., and Qiu, S.D. (2009). The expression of Usp26 gene in mouse testis and brain. Asian J Androl 11, 478–483.CrossRefGoogle Scholar
  53. Zhang, W., Liu, T., Mi, Y.J., Yue, L.D., Wang, J.M., Liu, D.W., Yan, J., and Tian, Q.B. (2015). Evidence from enzymatic and meta-analyses does not support a direct association between USP26 gene variants and male infertility. Andrology 3, 271–279.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhu Huang
    • 1
    • 2
  • Manan Khan
    • 1
  • Jianze Xu
    • 1
  • Teka Khan
    • 1
    • 3
  • Hui Ma
    • 1
  • Ranjha Khan
    • 1
  • Hafiz Muhammad Jafar Hussain
    • 1
  • Xiaohua Jiang
    • 1
    Email author
  • Qinghua Shi
    • 1
    Email author
  1. 1.Hefei National Laboratory for Physical Sciences at Microscale, The First Affiliated Hospital of USTC, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell ScienceUniversity of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and DevelopmentHefeiChina
  2. 2.The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest AnhuiLife Science College of Anqing Normal UniversityAnqingChina
  3. 3.Department of ZoologyAbbottabad University of Science and TechnologyAbbottabadPakistan

Personalised recommendations