Science China Life Sciences

, Volume 62, Issue 10, pp 1275–1286 | Cite as

Molecular underpinnings for microbial extracellular electron transfer during biogeochemical cycling of earth elements

  • Yongguang Jiang
  • Meimei Shi
  • Liang ShiEmail author


Microbial extracellular electron transfer (EET) is electron exchanges between the quinol/quinone pools in microbial cytoplasmic membrane and extracellular substrates. Microorganisms with EET capabilities are widespread in Earth hydrosphere, such as sediments of rivers, lakes and oceans, where they play crucial roles in biogeochemical cycling of key elements, including carbon, nitrogen, sulfur, iron and manganese. Over the past 12 years, significant progress has been made in mechanistic understanding of microbial EET at the molecular level. In this review, we focus on the molecular mechanisms underlying the microbial ability for extracellular redox transformation of iron, direct interspecies electron transfer as well as long distance electron transfer mediated by the cable bacteria in the hydrosphere.


microbial extracellular electron transfer molecular mechanisms multiheme c-type cytochrome conductive nanowires direct interspecies electron transfer cable bacteria biogeochemical cycling of elements Earth hydrosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (NSFC91851211; 41772363), One Hundred Talents Program of Hubei Province and China University of Geosciences-Wuhan.

Compliance and ethics The author(s) declare that they have no conflict of interest.


  1. Albers, S.V., and Meyer, B.H. (2011). The archaeal cell envelope. Nat Rev Micro 9, 414–426.Google Scholar
  2. Beal, E.J., House, C.H., and Orphan, V.J. (2009). Manganese-and irondependent marine methane oxidation. Science 325, 184–187.Google Scholar
  3. Beblawy, S., Bursac, T., Paquete, C., Louro, R., Clarke, T.A., and Gescher, J. (2018). Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol Microbiol 109, 571–583.PubMedGoogle Scholar
  4. Beckwith, C.R., Edwards, M.J., Lawes, M., Shi, L., Butt, J.N., Richardson, D.J., and Clarke, T.A. (2015). Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth. Front Microbiol 6, 332.PubMedPubMedCentralGoogle Scholar
  5. Bird, L.J., Bonnefoy, V., and Newman, D.K. (2011). Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19, 330–340.PubMedGoogle Scholar
  6. Bird, L.J., Saraiva, I.H., Park, S., Calçada, E.O., Salgueiro, C.A., Nitschke, W., Louro, R.O., and Newman, D.K. (2014). Nonredundant roles for cytochrome c2 and two high-potential iron-sulfur proteins in the photoferrotroph Rhodopseudomonas palustris TIE-1. J Bacteriol 196, 850–858.PubMedPubMedCentralGoogle Scholar
  7. Bjerg, J.T., Boschker, H.T.S., Larsen, S., Berry, D., Schmid, M., Millo, D., Tataru, P., Meysman, F.J.R., Wagner, M., Nielsen, L.P., et al. (2018). Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA 115, 5786–5791.PubMedGoogle Scholar
  8. Bose, A., Gardel, E.J., Vidoudez, C., Parra, E.A., and Girguis, P.R. (2014). Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5, 3391.PubMedGoogle Scholar
  9. Byrne, J.M., Klueglein, N., Pearce, C., Rosso, K.M., Appel, E., and Kappler, A. (2015). Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476.PubMedGoogle Scholar
  10. Cai, C., Leu, A.O., Xie, G.J., Guo, J., Feng, Y., Zhao, J.X., Tyson, G.W., Yuan, Z., and Hu, S. (2018). A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J 12, 1929–1939.PubMedPubMedCentralGoogle Scholar
  11. Carlson, H.K., Iavarone, A.T., Gorur, A., Siang Yeo, B., Tran, R., Melnyk, R.A., Mathies, R.A., Auer, M., and Coates, J.D. (2012). Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria. Proc Natl Acad Sci USA 109, 1702–1707.PubMedGoogle Scholar
  12. Castelle, C., Guiral, M., Malarte, G., Ledgham, F., Leroy, G., Brugna, M., and Giudici-Orticoni, M.T. (2008). A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 283, 25803–25811.PubMedPubMedCentralGoogle Scholar
  13. Chan, C.H., Levar, C.E., Jiménez-Otero, F., and Bond, D.R. (2017). Genome scale mutational analysis of geobacter sulfurreducens reveals distinct molecular mechanisms for respiration and sensing of poised electrodes versus Fe(III) oxides. J Bacteriol 199.Google Scholar
  14. Cologgi, D.L., Lampa-Pastirk, S., Speers, A.M., Kelly, S.D., and Reguera, G. (2011). Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci USA 108, 15248–15252.PubMedGoogle Scholar
  15. Conley, B.E., Intile, P.J., Bond, D.R., and Gralnick, J.A. (2018). Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Appl Environ Microbiol 84.Google Scholar
  16. Deng, X., Dohmae, N., Nealson, K.H., Hashimoto, K., and Okamoto, A. (2018). Multi-heme cytochromes provide a pathway for survival in energy-limited environments. Sci Adv 4, eaao5682.Google Scholar
  17. Dinh, H.T., Kuever, J., Mussmann, M., Hassel, A.W., Stratmann, M., and Widdel, F. (2004). Iron corrosion by novel anaerobic microorganisms. Nature 427, 829–832.PubMedGoogle Scholar
  18. El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H., and Gorby, Y.A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci USA 107, 18127–18131.PubMedGoogle Scholar
  19. Emerson, D., Fleming, E.J., and McBeth, J.M. (2010). Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol 64, 561–583.PubMedGoogle Scholar
  20. Emerson, D., and Moyer, C. (1997). Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63, 4784–4792.PubMedPubMedCentralGoogle Scholar
  21. Ettwig, K.F., Zhu, B., Speth, D., Keltjens, J.T., Jetten, M.S.M., and Kartal, B. (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA 113, 12792–12796.PubMedGoogle Scholar
  22. Glasser, N.R., Saunders, S.H., and Newman, D.K. (2017). The colorful world of extracellular electron shuttles. Annu Rev Microbiol 71, 731–751.PubMedPubMedCentralGoogle Scholar
  23. Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103, 11358–11363.PubMedGoogle Scholar
  24. Gralnick, J.A., Vali, H., Lies, D.P., and Newman, D.K. (2006). Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci USA 103, 4669–4674.PubMedGoogle Scholar
  25. Ha, P.T., Lindemann, S.R., Shi, L., Dohnalkova, A.C., Fredrickson, J.K., Madigan, M.T., and Beyenal, H. (2017). Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nat Commun 8, 13924.PubMedPubMedCentralGoogle Scholar
  26. Holmes, D.E., Shrestha, P.M., Walker, D.J.F., Dang, Y., Nevin, K.P., Woodard, T.L., and Lovley, D.R. (2017). Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and methanothrix species in methanogenic rice paddy soils. Appl Environ Microbiol 83.Google Scholar
  27. Ilbert, M., and Bonnefoy, V. (2013). Insight into the evolution of the iron oxidation pathways. Biochim Biophys Acta Bioenerg 1827, 161–175.Google Scholar
  28. Jiang, Z., Zhang, S., Klausen, L.H., Song, J., Li, Q., Wang, Z., Stokke, B.T., Huang, Y., Besenbacher, F., Nielsen, L.P., et al. (2018). In vitro singlecell dissection revealing the interior structure of cable bacteria. Proc Natl Acad Sci USA 115, 8517–8522.PubMedGoogle Scholar
  29. Jiao, Y., and Newman, D.K. (2007). The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol 189, 1765–1773.PubMedGoogle Scholar
  30. Jiménez Otero, F., Chan, C.H., and Bond, D.R. (2018). Identification of different putative outer membrane electron conduits necessary for Fe (III) citrate, Fe(III) oxide, Mn(IV) oxide, or electrode reduction by Geobacter sulfurreducens. J Bacteriol 200.Google Scholar
  31. Kappler, A., and Bryce, C. (2017). Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ Microbiol 19, 842–846.PubMedGoogle Scholar
  32. Kato, S., Hashimoto, K., and Watanabe, K. (2012a). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14, 1646–1654.PubMedGoogle Scholar
  33. Kato, S., Hashimoto, K., and Watanabe, K. (2012b). Microbial interspecies electron transfer via electric currents through conductive minerals. Proc Natl Acad Sci USA 109, 10042–10046.PubMedGoogle Scholar
  34. Larimer, F.W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M.L., Pelletier, D.A., Beatty, J.T., Lang, A.S., et al. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat Biotechnol 22, 55–61.PubMedGoogle Scholar
  35. Levar, C.E., Chan, C.H., Mehta-Kolte, M.G., and Bond, D.R. (2014). An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio 5, e02034.PubMedGoogle Scholar
  36. Levar, C.E., Hoffman, C.L., Dunshee, A.J., Toner, B.M., and Bond, D.R. (2017). Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. ISME J 11, 741–752.PubMedPubMedCentralGoogle Scholar
  37. Light, S.H., Su, L., Rivera-Lugo, R., Cornejo, J.A., Louie, A., Iavarone, A. T., Ajo-Franklin, C.M., and Portnoy, D.A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140–144.PubMedPubMedCentralGoogle Scholar
  38. Liu, J., Pearce, C.I., Liu, C., Wang, Z., Shi, L., Arenholz, E., and Rosso, K. M. (2013). Fe3–xTixO4 nanoparticles as tunable probes of microbial metal oxidation. J Am Chem Soc 135, 8896–8907.PubMedGoogle Scholar
  39. Liu, J., Wang, Z., Belchik, S.M., Edwards, M.J., Liu, C., Kennedy, D.W., Merkley, E.D., Lipton, M.S., Butt, J.N., Richardson, D.J., et al. (2012). Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1. Front Microbio 3.Google Scholar
  40. Liu, X., Shi, L., and Gu, J.D. (2018a). Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotech Adv 36, 1815–1827.Google Scholar
  41. Liu, X., Zhuo, S., Rensing, C., and Zhou, S. (2018b). Syntrophic growth with direct interspecies electron transfer between pili-free Geobacter species. ISME J 12, 2142–2151.PubMedPubMedCentralGoogle Scholar
  42. Liu, Y., Fredrickson, J.K., Zachara, J.M., and Shi, L. (2015). Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front Microbiol 6.Google Scholar
  43. Liu, Y., Wang, Z., Liu, J., Levar, C., Edwards, M.J., Babauta, J.T., Kennedy, D.W., Shi, Z., Beyenal, H., Bond, D.R., et al. (2014). A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6, 776–785.PubMedPubMedCentralGoogle Scholar
  44. Lloyd, J.R., Leang, C., Hodges Myerson, A.L., Coppi, M.V., Cuifo, S., Methe, B., Sandler, S.J., and Lovley, D.R. (2003). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369, 153–161.PubMedPubMedCentralGoogle Scholar
  45. Lovley, D.R. (2017a). Happy together: microbial communities that hook up to swap electrons. ISME J 11, 327–336.PubMedGoogle Scholar
  46. Lovley, D.R. (2017b). Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol 71, 643–664.PubMedGoogle Scholar
  47. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996). Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448.Google Scholar
  48. Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J. P., Gorby, Y.A., and Goodwin, S. (1993). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159, 336–344.PubMedGoogle Scholar
  49. Lovley, D.R., and Phillips, E.J. (1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.PubMedPubMedCentralGoogle Scholar
  50. Lovley, D.R., Stolz, J.F., Nord, G.L., and Phillips, E.J.P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252–254.Google Scholar
  51. Malkin, S.Y., Rao, A.M.F., Seitaj, D., Vasquez-Cardenas, D., Zetsche, E. M., Hidalgo-Martinez, S., Boschker, H.T.S., and Meysman, F.J.R. (2014). Natural occurrence of microbial sulphur oxidation by longrange electron transport in the seafloor. ISME J 8, 1843–1854.PubMedPubMedCentralGoogle Scholar
  52. McGlynn, S.E., Chadwick, G.L., Kempes, C.P., and Orphan, V.J. (2015). Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526, 531–535.PubMedGoogle Scholar
  53. Melton, E.D., Swanner, E.D., Behrens, S., Schmidt, C., and Kappler, A. (2014). The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Micro 12, 797–808.Google Scholar
  54. Moran, J.J., House, C.H., Freeman, K.H., and Ferry, J.G. (2005). Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1, 303–309.PubMedGoogle Scholar
  55. Morgado, L., Bruix, M., Pessanha, M., Londer, Y.Y., and Salgueiro, C.A. (2010). Thermodynamic characterization of a triheme cytochrome family from Geobacter sulfurreducens reveals mechanistic and functional diversity. Biophys J 99, 293–301.PubMedPubMedCentralGoogle Scholar
  56. Myers, C.R., and Nealson, K.H. (1988). Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319–1321.Google Scholar
  57. Nayak, D.D., and Metcalf, W.W. (2017). Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc Natl Acad Sci USA 114, 2976–2981.PubMedGoogle Scholar
  58. Otte, J.M., Harter, J., Laufer, K., Blackwell, N., Straub, D., Kappler, A., and Kleindienst, S. (2018). The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ Microbiol 20, 2483–2499.PubMedGoogle Scholar
  59. Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R.L., Kjeldsen, K.U., Schreiber, L., Gorby, Y.A., El-Naggar, M.Y., et al. (2012). Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218–221.PubMedGoogle Scholar
  60. Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., et al. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA 111, 12883–12888.PubMedGoogle Scholar
  61. Pirbadian, S., and El-Naggar, M.Y. (2012). Multistep hopping and extracellular charge transfer in microbial redox chains. Phys Chem Chem Phys 14, 13802–13808.PubMedGoogle Scholar
  62. Reguera, G. (2018). Biological electron transport goes the extra mile. Proc Natl Acad Sci USA 115, 5632–5634.PubMedGoogle Scholar
  63. Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., and Lovley, D.R. (2005). Extracellular electron transfer via microbial nanowires. Nature 435, 1098–1101.Google Scholar
  64. Richardson, D.J., Butt, J.N., Fredrickson, J.K., Zachara, J.M., Shi, L., Edwards, M.J., White, G., Baiden, N., Gates, A.J., Marritt, S.J., et al. (2012). The ‘porin-cytochrome’ model for microbe-to-mineral electron transfer. Mol Microbiol 85, 201–212.PubMedGoogle Scholar
  65. Richter, K., Schicklberger, M., and Gescher, J. (2012). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78, 913–921.PubMedPubMedCentralGoogle Scholar
  66. Risgaard-Petersen, N., Kristiansen, M., Frederiksen, R.B., Dittmer, A.L., Bjerg, J.T., Trojan, D., Schreiber, L., Damgaard, L.R., Schramm, A., and Nielsen, L.P. (2015). Cable bacteria in freshwater sediments. Appl Environ Microbiol 81, 6003–6011.PubMedPubMedCentralGoogle Scholar
  67. Roden, E.E., Kappler, A., Bauer, I., Jiang, J., Paul, A., Stoesser, R., Konishi, H., and Xu, H. (2010). Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat Geosci 3, 417–421.Google Scholar
  68. Roden, E.E., McBeth, J.M., Blöthe, M., Percak-Dennett, E.M., Fleming, E. J., Holyoke, R.R., Luther, G.W., Emerson, D., and Schieber, J. (2012). The microbial ferrous wheel in a neutral pH groundwater seep. Front Microbio 3, 172.Google Scholar
  69. Rotaru, A.E., Calabrese, F., Stryhanyuk, H., Musat, F., Shrestha, P.M., Weber, H.S., Snoeyenbos-West, O.L.O., Hall, P.O.J., Richnow, H.H., Musat, N., et al. (2018). Conductive particles enable syntrophic acetate oxidation between Geobacter and Methanosarcina from coastal sediments. mBio 9.Google Scholar
  70. Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., and Lovley, D.R. (2014a). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80, 4599–4605.PubMedPubMedCentralGoogle Scholar
  71. Rotaru, A.E., Shrestha, P.M., Liu, F., Shrestha, M., Shrestha, D., Embree, M., Zengler, K., Wardman, C., Nevin, K.P., and Lovley, D.R. (2014b). A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7, 408–415.Google Scholar
  72. Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., and Orphan, V.J. (2016). Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351, 703–707.PubMedGoogle Scholar
  73. Seitaj, D., Schauer, R., Sulu-Gambari, F., Hidalgo-Martinez, S., Malkin, S. Y., Burdorf, L.D.W., Slomp, C.P., and Meysman, F.J.R. (2015). Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA 112, 13278–13283.PubMedGoogle Scholar
  74. Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.Q., and Fredrickson, J.K. (2016). Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Micro 14, 651–662.Google Scholar
  75. Shi, L., Fredrickson, J.K., and Zachara, J.M. (2014). Genomic analyses of bacterial porin-cytochrome gene clusters. Front Microbiol 5.Google Scholar
  76. Shi, L., Rosso, K.M., Zachara, J.M., and Fredrickson, J.K. (2012). Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochm Soc Trans 40, 1261–1267.Google Scholar
  77. Shi, L., Squier, T.C., Zachara, J.M., and Fredrickson, J.K. (2007). Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65, 12–20.PubMedPubMedCentralGoogle Scholar
  78. Skennerton, C.T., Chourey, K., Iyer, R., Hettich, R.L., Tyson, G.W., and Orphan, V.J. (2017). Methane-fueled syntrophy through extracellular electron transfer: uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio 8.Google Scholar
  79. Soo, V.W.C., McAnulty, M.J., Tripathi, A., Zhu, F., Zhang, L., Hatzakis, E., Smith, P.B., Agrawal, S., Nazem-Bokaee, H., Gopalakrishnan, S., et al. (2016). Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Fact 15, 11.PubMedPubMedCentralGoogle Scholar
  80. Subramanian, P., Pirbadian, S., El-Naggar, M.Y., and Jensen, G.J. (2018). Ultrastructure of Shewanella oneidensis MR-1 nanowires revealed by electron cryotomography. Proc Natl Acad Sci USA 115, e3246–E3255.PubMedGoogle Scholar
  81. Sulu-Gambari, F., Seitaj, D., Meysman, F.J.R., Schauer, R., Polerecky, L., and Slomp, C.P. (2016). Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol 50, 1227–1233.PubMedGoogle Scholar
  82. Summers, Z.M., Fogarty, H.E., Leang, C., Franks, A.E., Malvankar, N.S., and Lovley, D.R. (2010). Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415.PubMedGoogle Scholar
  83. Thauer, R.K. (2011). Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2. Curr Opin Microbiol 14, 292–299.PubMedGoogle Scholar
  84. Trojan, D., Schreiber, L., Bjerg, J.T., Bøggild, A., Yang, T., Kjeldsen, K.U., and Schramm, A. (2016). A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Systatic Appl Microbiol 39, 297–306.Google Scholar
  85. Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A., and Holmes, D.S. (2008). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597.PubMedPubMedCentralGoogle Scholar
  86. Weber, K.A., Achenbach, L.A., and Coates, J.D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4, 752–764.PubMedGoogle Scholar
  87. Wegener, G., Krukenberg, V., Riedel, D., Tegetmeyer, H.E., and Boetius, A. (2015). Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526, 587–590.PubMedGoogle Scholar
  88. White, G.F., Edwards, M.J., Gomez-Perez, L., Richardson, D.J., Butt, J.N., and Clarke, T.A. (2016). Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol 68, 87–138.PubMedGoogle Scholar
  89. Xu, S., Barrozo, A., Tender, L.M., Krylov, A.I., and El-Naggar, M.Y. (2018). Multiheme cytochrome mediated redox conduction through Shewanella oneidensis MR-1 cells. J Am Chem Soc 140, 10085–10089.PubMedGoogle Scholar
  90. Yan, Z., Joshi, P., Gorski, C.A., and Ferry, J.G. (2018). A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration. Nat Commun 9, 1642.PubMedPubMedCentralGoogle Scholar
  91. Zacharoff, L., Chan, C.H., and Bond, D.R. (2015). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107, 7–13.PubMedGoogle Scholar
  92. Zhao, L., Dong, H., Kukkadapu, R.K., Zeng, Q., Edelmann, R.E., Pentrák, M., and Agrawal, A. (2015). Biological redox cycling of iron in nontronite and its potential application in nitrate removal. Environ Sci Technol 49, 5493–5501.PubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biological Sciences and Technology, School of Environmental StudiesChina University of GeosciencesWuhanChina
  2. 2.State Key Laboratory of Biogeology and Environmental GeologyChina University of GeosciencesWuhanChina

Personalised recommendations