Advertisement

Science China Life Sciences

, Volume 62, Issue 4, pp 507–516 | Cite as

Genome-wide dissection of segregation distortion using multiple inter-subspecific crosses in rice

  • Guangwei Li
  • Jiye Jin
  • Yan Zhou
  • Xufeng Bai
  • Donghai Mao
  • Cong Tan
  • Gongwei Wang
  • Yidan OuyangEmail author
Research Paper

Abstract

Mendelian inheritance can ensure equal segregation of alleles from parents to offspring, which provides fundamental basis for genetics and molecular biology. Segregation distortion (SD) leads to preferential transmission of certain alleles from generation to generation. Such violation of Mendelian genetic principle is often accompanied by reproductive isolation and eventually speciation. Although SD is observed in a wide range of species from plants to animals, genome-wide dissection of such biased transmission of gametes is rare. Using nine inter-subspecific rice crosses, a genome-wide screen for SD loci is performed, which reveals 61 single-locus quantitative trait loci and 194 digenic interactions showing distorted transmission ratio, among which 24 new SD loci are identified. Biased transmission of alleles is observed in all nine crosses, suggesting that SD exists extensively in rice populations. 72.13% distorted regions are repeatedly detected in multiple populations, and the most prevalent SD hotspot that observed in eight populations is mapped to chromosome 3. Xian alleles are transmitted at higher frequencies than geng alleles in inter-subspecific crosses, which change the genetic composition of the rice populations. Epistatic interaction contributes significantly to the deviation of Mendelian segregation at the whole-genome level in rice, which is distinct from that in animals. These results provide an extensive archive for investigating the genetic basis of SD in rice, which have significant implications in understanding the reproductive isolation and formation of inter-subspecific barriers during the evolution.

Keywords

Oryza sativa xian/indica geng/japonica segregation distortion reproductive isolation allele frequency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Profs. Yongzhong Xing and Shiping Wang for providing the genotype data of the populations. We also thank Yuan Wang and Xu Li for checking the data. This work was supported by grants from the National Natural Science Foundation of China (31771873 and 30800678), the National Program for Support of Top-notch Young Professionals, and the Fundamental Research Funds for the Central Universities (2662017QD033).

Supplementary material

11427_2018_9452_MOESM1_ESM.xlsx (15 kb)
Table S1 Interacting bin clusters showing significant χ2 independence test values in Nip × 9311 and XZ2 × ZS97 RIL populations.
11427_2018_9452_MOESM2_ESM.xlsx (17 kb)
Table S2 Segregation distortion regions detected in nine inter-subspecific populations in rice.

References

  1. Bai, X., Luo, L., Yan, W., Kovi, M.R., Zhan, W., and Xing, Y. (2010). Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11, 16.CrossRefGoogle Scholar
  2. Bauer, H., Véron, N., Willert, J., and Herrmann, B.G. (2007). The tcomplex-encoded guanine nucleotide exchange factor Fgd2 reveals that two opposing signaling pathways promote transmission ratio distortion in the mouse. Genes Dev 21, 143–147.CrossRefGoogle Scholar
  3. Bauer, H., Willert, J., Koschorz, B., and Herrmann, B.G. (2005). The t complex-encoded GTPase-activating protein Tagap1 acts as a transmission ratio distorter in mice. Nat Genet 37, 969–973.CrossRefGoogle Scholar
  4. Chen, J., Ding, J., Ouyang, Y., Du, H., Yang, J., Cheng, K., Zhao, J., Qiu, S., Zhang, X., Yao, J., et al. (2008). A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica-japonica hybrids in rice. Proc Natl Acad Sci USA 105, 11436–11441.CrossRefGoogle Scholar
  5. Corbett-Detig, R.B., Zhou, J., Clark, A.G., Hartl, D.L., and Ayroles, J.F. (2013). Genetic incompatibilities are widespread within species. Nature 504, 135–137.CrossRefGoogle Scholar
  6. Du, H., Ouyang, Y., Zhang, C., and Zhang, Q. (2011). Complex evolution of S5, a major reproductive barrier regulator, in the cultivated rice Oryza sativa and its wild relatives. New Phytol 191, 275–287.CrossRefGoogle Scholar
  7. Harushima, Y., Nakagahra, M., Yano, M., Sasaki, T., and Kurata, N. (2001). A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159, 883–892.Google Scholar
  8. Harushima, Y., Nakagahra, M., Yano, M., Sasaki, T., and Kurata, N. (2002). Diverse variation of reproductive barriers in three intraspecific rice crosses. Genetics 160, 313–322.Google Scholar
  9. Herrmann, B.G., Koschorz, B., Wertz, K., McLaughlin, K.J., and Kispert, A. (1999). A protein kinase encoded by the t complex responder gene causes non-mendelian inheritance. Nature 402, 141–146.CrossRefGoogle Scholar
  10. Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., et al. (2009). High-throughput genotyping by whole-genome resequencing. Genome Res 19, 1068–1076.CrossRefGoogle Scholar
  11. Jing, W., Zhang, W., Jiang, L., Chen, L., Zhai, H., and Wan, J. (2007). Two novel loci for pollen sterility in hybrids between the weedy strain Ludao and the Japonica variety Akihikari of rice (Oryza sativa L.). Theor Appl Genet 114, 915–925.CrossRefGoogle Scholar
  12. Kato, S., Kosaka, H., and Hara, S. (1928). On the affinity of rice varieties as shown by fertility of hybrid plants. Bull Sci Fac Agric Kyushu Univ 3, 132–147.Google Scholar
  13. Koide, Y., Ogino, A., Yoshikawa, T., Kitashima, Y., Saito, N., Kanaoka, Y., Onishi, K., Yoshitake, Y., Tsukiyama, T., Saito, H., et al. (2018). Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice. Proc Natl Acad Sci USA 115, e1955–E1962.CrossRefGoogle Scholar
  14. Kubo, T., Takashi, T., Ashikari, M., Yoshimura, A., and Kurata, N. (2016a). Two tightly linked genes at the hsa1 locus cause both F1 and F2 hybrid sterility in rice. Mol Plant 9, 221–232.CrossRefGoogle Scholar
  15. Kubo, T., Yoshimura, A., and Kurata, N. (2016b). Pollen killer gene S35 function requires interaction with an activator that maps close to S24, another pollen killer gene in rice. G3 6, 1459–1468.CrossRefGoogle Scholar
  16. Li, D., Chen, L., Jiang, L., Zhu, S., Zhao, Z., Liu, S., Su, N., Zhai, H., Ikehashi, H., and Wan, J. (2007). Fine mapping of S32(t), a new gene causing hybrid embryo sac sterility in a Chinese landrace rice (Oryza sativa L.). Theor Appl Genet 114, 515–524.CrossRefGoogle Scholar
  17. Li, G., Li, X., Wang, Y., Mi, J., Xing, F., Zhang, D., Dong, Q., Li, X., Xiao, J., Zhang, Q., et al. (2017). Three representative inter and intrasubspecific crosses reveal the genetic architecture of reproductive isolation in rice. Plant J 92, 349–362.CrossRefGoogle Scholar
  18. Long, Y., Zhao, L., Niu, B., Su, J., Wu, H., Chen, Y., Zhang, Q., Guo, J., Zhuang, C., Mei, M., et al. (2008). Hybrid male sterility in rice controlled by interaction between divergent alleles of two adjacent genes. Proc Natl Acad Sci USA 105, 18871–18876.CrossRefGoogle Scholar
  19. Mao, D., Liu, T., Xu, C., Li, X., and Xing, Y. (2011). Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica 180, 261–271.CrossRefGoogle Scholar
  20. Mizuta, Y., Harushima, Y., and Kurata, N. (2010). Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proc Natl Acad Sci USA 107, 20417–20422.CrossRefGoogle Scholar
  21. Nguyen, G.N., Yamagata, Y., Shigematsu, Y., Watanabe, M., Miyazaki, Y., Doi, K., Tashiro, K., Kuhara, S., Kanamori, H., Wu, J., et al. (2017). Duplication and loss of function of genes encoding RNA polymerase III subunit C4 causes hybrid incompatibility in rice. G3 7, 2565–2575.CrossRefGoogle Scholar
  22. Oka, H. (1988). Origin of Cultivated Rice, (Tokyo: Japan Scientific Societies Press).Google Scholar
  23. Ouyang, Y. (2016). Progress of indica-japonica hybrid sterility and widecompatibility in rice (in Chinese with English abstract). Chin Sci Bull 61, 3833–3841.Google Scholar
  24. Ouyang, Y.D., Chen, J.J., Ding, J.H., and Zhang, Q.F. (2009). Advances in the understanding of inter-subspecific hybrid sterility and widecompatibility in rice. Chin Sci Bull 54, 2332–2341.CrossRefGoogle Scholar
  25. Ouyang, Y., Li, G., Mi, J., Xu, C., Du, H., Zhang, C., Xie, W., Li, X., Xiao, J., Song, H., et al. (2016). Origination and establishment of a trigenic reproductive isolation system in rice. Mol Plant 9, 1542–1545.CrossRefGoogle Scholar
  26. Ouyang, Y., Liu, Y.G., and Zhang, Q. (2010). Hybrid sterility in plant: stories from rice. Curr Opin Plant Biol 13, 186–192.CrossRefGoogle Scholar
  27. Ouyang, Y., and Zhang, Q. (2013). Understanding reproductive isolation based on the rice model. Annu Rev Plant Biol 64, 111–135.CrossRefGoogle Scholar
  28. Phadnis, N., and Orr, H.A. (2009). A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323, 376–379.CrossRefGoogle Scholar
  29. Reflinur Kim, B., Jang, S.M., Chu, S.H., Bordiya, Y., Akter, M.B., Lee, J., Chin, J.H., and Koh, H.J. (2014). Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice 7, 3.CrossRefGoogle Scholar
  30. Salomé, P.A., Bomblies, K., Fitz, J., Laitinen, R.A.E., Warthmann, N., Yant, L., and Weigel, D. (2012). The recombination landscape in Arabidopsis thaliana F2 populations. Heredity 108, 447–455.CrossRefGoogle Scholar
  31. Seidel, H.S., Rockman, M.V., and Kruglyak, L. (2008). Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319, 589–594.CrossRefGoogle Scholar
  32. Seymour, D.K., Chae, E., Ariöz, B.I., Koenig, D., and Weigel, D. (2017). The genetic architecture of recurrent segregation distortion in Arabidopsis thaliana. bioRxiv preprint.Google Scholar
  33. Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., Xie, X., Zhu, Q., Tang, H., Li, Q., et al. (2017). Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat Commun 8, 1310.CrossRefGoogle Scholar
  34. Song, X., Qiu, S.Q., Xu, C.G., Li, X.H., and Zhang, Q. (2005). Genetic dissection of embryo sac fertility, pollen fertility, and their contributions to spikelet fertility of intersubspecific hybrids in rice. Theor Appl Genet 110, 205–211.CrossRefGoogle Scholar
  35. Tan, C., Han, Z., Yu, H., Zhan, W., Xie, W., Chen, X., Zhao, H., Zhou, F., and Xing, Y. (2013). QTL scanning for rice yield using a whole genome SNP array. J Genets Genomics 40, 629–638.CrossRefGoogle Scholar
  36. Ting, Y. (1949a). Chronological studies of the cultivation and the distribution of rice varieties, Keng and Sen (in Chinese). Agr Bull Col Agr Sun Yatsen Univ 6, 1–32.Google Scholar
  37. Ting, Y. (1949b). A preliminary report on the cultivation and distribution of hsien and keng rices in ancient China and the classification of current cultivars (in Chinese). Memoir Coll Agr Sun Yatsen Univ 6, 1–32.Google Scholar
  38. Wan, J., Yamaguchi, Y., Kato, H., and Ikehashi, H. (1996). Two new loci for hybrid sterility in cultivated rice (Oryza sativa L.). Theoret Appl Genets 92, 183–190.CrossRefGoogle Scholar
  39. Wang, C., Zhu, C., Zhai, H., and Wan, J. (2005). Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa L.). Genet Res 86, 97–106.CrossRefGoogle Scholar
  40. Wang, J., Liu, K.D., Xu, C.G., Li, X.H., and Zhang, Q. (1998). The high level of wide-compatibility of variety ‘Dular’ has a complex genetic basis. Theor Appl Genet 97, 407–412.CrossRefGoogle Scholar
  41. Wang, L., Wang, A., Huang, X., Zhao, Q., Dong, G., Qian, Q., Sang, T., and Han, B. (2011). Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines. Theor Appl Genet 122, 327–340.CrossRefGoogle Scholar
  42. Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49.CrossRefGoogle Scholar
  43. Xie, W., Wang, G., Yuan, M., Yao, W., Lyu, K., Zhao, H., Yang, M., Li, P., Zhang, X., Yuan, J., et al. (2015). Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc Natl Acad Sci USA 112, e5411–E5419.CrossRefGoogle Scholar
  44. Xie, Y., Xu, P., Huang, J., Ma, S., Xie, X., Tao, D., Chen, L., and Liu, Y.G. (2017). Interspecific hybrid sterility in rice is mediated by OgTPR1 at the S1 locus encoding a peptidase-like protein. Mol Plant 10, 1137–1140.CrossRefGoogle Scholar
  45. Yamagata, Y., Yamamoto, E., Aya, K., Thanda Win, K., Doi, K., Ito, T., Kanamori, H., Wu, J., Matsumoto, T., Matsuoka, M., et al. (2010). Mitochondrial gene in the nuclear genome induces reproductive barrier in rice. Proc Natl Acad Sci USA 107, 1494–1499.CrossRefGoogle Scholar
  46. Yamamoto, E., Takashi, T., Morinaka, Y., Lin, S., Wu, J., Matsumoto, T., Kitano, H., Matsuoka, M., and Ashikari, M. (2010). Gain of deleterious function causes an autoimmune response and Bateson-Dobzhansky-Muller incompatibility in rice. Mol Genet Genomics 283, 305–315.CrossRefGoogle Scholar
  47. Yang, J., Zhao, X., Cheng, K., Du, H., Ouyang, Y., Chen, J., Qiu, S., Huang, J., Jiang, Y., Jiang, L., et al. (2012). A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337, 1336–1340.CrossRefGoogle Scholar
  48. Yu, X., Zhao, Z., Zheng, X., Zhou, J., Kong, W., Wang, P., Bai, W., Zheng, H., Zhang, H., Li, J., et al. (2018). A selfish genetic element confers non-Mendelian inheritance in rice. Science 360, 1130–1132.CrossRefGoogle Scholar
  49. Zhang, H., Zhang, C.Q., Sun, Z.Z., Yu, W., Gu, M.H., Liu, Q.Q., and Li, Y. S. (2011). A major locus qS12, located in a duplicated segment of chromosome 12, causes spikelet sterility in an indica-japonica rice hybrid. Theor Appl Genet 123, 1247–1256.CrossRefGoogle Scholar
  50. Zhao, Z., Wang, C., Jiang, L., Zhu, S., Ikehashi, H., and Wan, J. (2006). Identification of a new hybrid sterility gene in rice (bi Oryza sativa L.). Euphytica 151, 331–337.CrossRefGoogle Scholar
  51. Zhou, Y., Cao, Y., Huang, Y., Xie, W., Xu, C., Li, X., and Wang, S. (2009). Multiple gene loci affecting genetic background-controlled disease resistance conferred by R gene Xa3/Xa26 in rice. Theor Appl Genet 120, 127–138.CrossRefGoogle Scholar
  52. Zhu, S., Jiang, L., Wang, C., Zhai, H., Li, D., and Wan, J. (2005). The origin of weedy rice Ludao in China deduced by genome wide analysis of its hybrid sterility genes. Breed Sci 55, 409–414.CrossRefGoogle Scholar
  53. Zhu, Y., Yu, Y., Cheng, K., Ouyang, Y., Wang, J., Gong, L., Zhang, Q., Li, X., Xiao, J., and Zhang, Q. (2017). Processes underlying a reproductive barrier in indica-japonica rice hybrids revealed by transcriptome analysis. Plant Physiol 174, 1683–1696.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Guangwei Li
    • 1
  • Jiye Jin
    • 1
  • Yan Zhou
    • 1
  • Xufeng Bai
    • 1
  • Donghai Mao
    • 1
  • Cong Tan
    • 1
  • Gongwei Wang
    • 1
  • Yidan Ouyang
    • 1
    Email author
  1. 1.National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina

Personalised recommendations