Advertisement

Science China Life Sciences

, Volume 62, Issue 4, pp 437–452 | Cite as

Exaptation at the molecular genetic level

  • Jürgen BrosiusEmail author
Review
  • 37 Downloads

Abstract

The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA—including transposed elements, formerly considered junk DNA—for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.

Keywords

exaptation adaptation aptation neofunctionalization subfunctionalization non-protein coding RNA cooptation recruitment novel functional gene modules de novo genes retrogenes 

Notes

Acknowledgements

Apologies to those whose articles were not cited which, in part, is owed to the explosive growth of the literature in the field. The author is grateful to Stephanie Klco-Brosius for a last minute review of language.

References

  1. Ahituv, N., Zhu, Y., Visel, A., Holt, A., Afzal, V., Pennacchio, L.A., and Rubin, E.M. (2007). Deletion of ultraconserved elements yields viable mice. PLoS Biol 5, e234.Google Scholar
  2. Anderson, S.N., and Springer, N.M. (2018). Potential roles for transposable elements in creating imprinted expression. Curr Opin Genets Dev 49, 8–14.Google Scholar
  3. Atkins, J.F., Gesteland, R.F., and Cech, T.R. (2011). RNA Worlds: from life’s origins to diversity in gene regulation (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).Google Scholar
  4. Babatz, T.D., and Burns, K.H. (2013). Functional impact of the human mobilome. Curr Opin Genets Dev 23, 264–270.Google Scholar
  5. Baertsch, R., Diekhans, M., Kent, W.J., Haussler, D., and Brosius, J. (2008). Retrocopy contributions to the evolution of the human genome. BMC Genomics 9, 466.Google Scholar
  6. Bakel, H.V., Nislow, C., Blencowe,B.,J., and Hughes, T.R. (2011). Response to “The Reality of Pervasive Transcription”. PLoS Biol 9, e1001102.Google Scholar
  7. Barcroft, J., and Stephens, J.G. (1927). Observations upon the size of the spleen. J Physiol 64, 1–22.Google Scholar
  8. Betrán, E., Thornton, K., and Long, M. (2002). Retroposed new genes out of the X in Drosophila. Genome Res 12, 1854–1859.Google Scholar
  9. Black, S.G., Arnaud, F., Palmarini, M., and Spencer, T.E. (2010). Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 64, 255–264.Google Scholar
  10. Bladon, T.S., and McBurney, M.W. (1991). The rodent B2 sequence can affect expression when present in the transcribed region of a reporter gene. Gene 98, 259–263.Google Scholar
  11. Blain, J.C., and Szostak, J.W. (2014). Progress toward synthetic cells. Annu Rev Biochem 83, 615–640.Google Scholar
  12. Blond, J.L., Lavillette, D., Cheynet, V., Bouton, O., Oriol, G., Chapel-Fernandes, S., Mandrand, B., Mallet, F., and Cosset, F.L. (2000). An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74, 3321–3329.Google Scholar
  13. Bobay, L.M., Touchon, M., and Rocha, E.P.C. (2014). Pervasive domestication of defective prophages by bacteria. Proc Natl Acad Sci USA 111, 12127–12132.Google Scholar
  14. Bock, R. (2017). Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu Rev Genet 51, 1–22.Google Scholar
  15. Boer, P.H., Adra, C.N., Lau, Y.F., and McBurney, M.W. (1987). The testisspecific phosphoglycerate kinase gene pgk-2 is a recruited retroposon.. Mol Cell Biol 7, 3107–3112.Google Scholar
  16. Bornberg-Bauer, E., and Albà, M.M. (2013). Dynamics and adaptive benefits of modular protein evolution. Curr Opin Struct Biol 23, 459–466.Google Scholar
  17. Bornberg-Bauer, E., Huylmans, A.K., and Sikosek, T. (2010). How do new proteins arise? Curr Opin Struct Biol 20, 390–396.Google Scholar
  18. Bornberg-Bauer, E., Schmitz, J., and Heberlein, M. (2015). Emergence of de novo proteins from ‘dark genomic matter’ by ‘grow slow and moult’. Biochem Soc Trans 43, 867–873.Google Scholar
  19. Bouttier, M., Laperriere, D., Memari, B., Mangiapane, J., Fiore, A., Mitchell, E., Verway, M., Behr, M.A., Sladek, R., Barreiro, L.B., et al. (2016). Alu repeats as transcriptional regulatory platforms in macrophage responses to M. tuberculosis infection. Nucleic Acids Res 44, 10571–10587.Google Scholar
  20. Bridges, C.B. (1936). The bar “gene” a duplication. Science 83, 210–211.Google Scholar
  21. Britten, R.J., and Davidson, E.H. (1969). Gene regulation for higher cells: a theory. Science 165, 349–357.Google Scholar
  22. Brosius, J. (1991). Retroposons—seeds of evolution. Science 251, 753.Google Scholar
  23. Brosius, J. (1999a). Genomes were forged by massive bombardments with retroelements and retrosequences. Genetica 107, 209–238.Google Scholar
  24. Brosius, J. (1999b). Many G-protein-coupled receptors are encoded by retrogenes. Trends Genets 15, 304–305.Google Scholar
  25. Brosius, J. (1999c). RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238, 115–134.Google Scholar
  26. Brosius, J. (2003a). The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118, 99–115.Google Scholar
  27. Brosius, J. (2003b). Gene duplication and other evolutionary strategies: from the RNA world to the future. J Struct Funct Genomics 3, 1–17.Google Scholar
  28. Brosius, J. (2005a). Disparity, adaptation, exaptation, bookkeeping, and contingency at the genome level. Paleobiology 31, 1–16.Google Scholar
  29. Brosius, J. (2005b). Echoes from the past—are we still in an RNP world? Cytogenet Genome Res 110, 8–24.Google Scholar
  30. Brosius, J. (2005c). Waste not, want not—transcript excess in multicellular eukaryotes. Trends Genets 21, 287–288.Google Scholar
  31. Brosius, J. (2009). The fragmented gene. Ann New York Acad Sci 1178, 186–193.Google Scholar
  32. Brosius, J. (2014). The persistent contributions of RNA to eukaryotic gen(om)e architecture and cellular function. Cold Spring Harbor Perspectives Biol 6, a016089.Google Scholar
  33. Brosius, J., and Gould, S.J. (1992). On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc Natl Acad Sci USA 89, 10706–10710.Google Scholar
  34. Brosius, J., and Raabe, C.A. (2016). What is an RNA? A top layer for RNA classification. RNA Biol 13, 140–144.Google Scholar
  35. Brosius, J., and Tiedge, H. (1995). Reverse transcriptase: mediator of genomic plasticity. Virus Genes 11, 163–179.Google Scholar
  36. Buss, D.M., Haselton, M.G., Shackelford, T.K., Bleske, A.L., and Wakefield, J.C. (1998). Adaptations, exaptations, and spandrels. Am Psychol 53, 533–548.Google Scholar
  37. Cai, J., Zhao, R., Jiang, H., and Wang, W. (2008). De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179, 487–496.Google Scholar
  38. Capshew, C.R., Dusenbury, K.L., and Hundley, H.A. (2012). Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing. Nucleic Acids Res 40, 8637–8645.Google Scholar
  39. Carninci, P. (2010). RNA dust: where are the genes? DNA Res 17, 51–59.Google Scholar
  40. Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., et al. (2012). Long noncoding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457.Google Scholar
  41. Carvunis, A.R., Rolland, T., Wapinski, I., Calderwood, M.A., Yildirim, M. A., Simonis, N., Charloteaux, B., Hidalgo, C.A., Barbette, J., Santhanam, B., et al. (2012). Proto-genes and de novo gene birth. Nature 487, 370–374.Google Scholar
  42. Caudron-Herger, M., Pankert, T., Seiler, J., Németh, A., Voit, R., Grummt, I., and Rippe, K. (2015). Alu element-containing RNAs maintain nucleolar structure and function. EMBO J 34, 2758–2774.Google Scholar
  43. Chen, H., Chen, L., Wu, Y., Shen, H., Yang, G., and Deng, C. (2017). The exonization and functionalization of an Alu-J element in the protein coding region of glycoprotein hormone alpha gene represent a novel mechanism to the evolution of hemochorial placentation in primates. Mol Biol Evol 34, 3216–3231.Google Scholar
  44. Chen, L.L., and Yang, L. (2017). ALU ternative regulation for gene expression. Trends Cell Biol 27, 480–490.Google Scholar
  45. Chen, S., Spletter, M., Ni, X., White, K.P., Luo, L., and Long, M. (2012). Frequent recent origination of brain genes shaped the evolution of foraging behavior in Drosophila. Cell Rep 1, 118–132.Google Scholar
  46. Chen, S., Zhang, Y.E., and Long, M. (2010). New genes in Drosophila quickly become essential. Science 330, 1682–1685.Google Scholar
  47. Chen, S., Krinsky, B.H., and Long, M. (2013). New genes as drivers of phenotypic evolution. Nat Rev Genet 14, 645–660.Google Scholar
  48. Chen, W., Heierhorst, J., Brosius, J., and Tiedge, H. (1997). Expression of neural BC1 RNA: induction in murine tumours. Eur J Cancer 33, 288–292.Google Scholar
  49. Chillon, I., and Pyle, A.M. (2016). Inverted repeat Alu elements in the human lincRNA-p21 adopt a conserved secondary structure that regulates RNA function. Nucleic Acids Res 44, 9462–9471.Google Scholar
  50. Chuong, E.B. (2013). Retroviruses facilitate the rapid evolution of the mammalian placenta. Bioessays 35, 853–861.Google Scholar
  51. Chuong, E.B., Elde, N.C., and Feschotte, C. (2016). Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087.Google Scholar
  52. Chuong, E.B., Elde, N.C., and Feschotte, C. (2017). Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet 18, 71–86.Google Scholar
  53. Chuong, E.B., Rumi, M.A.K., Soares, M.J., and Baker, J.C. (2013). Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45, 325–329.Google Scholar
  54. Churakov, G., Sadasivuni, M.K., Rosenbloom, K.R., Huchon, D., Brosius, J., and Schmitz, J. (2010). Rodent evolution: back to the root. Mol Biol Evol 27, 1315–1326.Google Scholar
  55. (a)Clark, M.B., Amaral, P.P., Schlesinger, F.J., Dinger, M.E., Taft, R.J., Rinn, J.L., Ponting, C.P., Stadler, P.F., Morris, K.V., Morillon, A., et al. (2011). The reality of pervasive transcription. PLoS Biol 9, e1000625.; (b)discussion e1001102.Google Scholar
  56. Daniel, C., Behm, M., and Öhman, M. (2015). The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 72, 4063–4076.Google Scholar
  57. Daniel, C., Silberberg, G., Behm, M., and Öhman, M. (2014). Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15, R28.Google Scholar
  58. Darwin, C. (1845). Journal of researches into the natural history and geology of the countries visited during the voyage of H.M.S. Beagle round the world, under the Command of Capt. Fitz Roy, R.N Second edn (London: John Murray).Google Scholar
  59. Darwin, C. (1972). On the Origin of Species, 6th edn (London: John Murray).Google Scholar
  60. de Koning, A.P.J., Gu, W., Castoe, T.A., Batzer, M.A., and Pollock, D.D. (2011). Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7, e1002384.Google Scholar
  61. de Souza, F.S., Franchini, L.F., and Rubinstein, M. (2013). Exaptation of transposable elements into novel cis-regulatory elements: is the evidence always strong? Mol Biol Evol 30, 1239–1251.Google Scholar
  62. Dechiara, T.M., and Brosius, J. (1987). Neural BC1 RNA: cDNA clones reveal nonrepetitive sequence content.. Proc Natl Acad Sci USA 84, 2624–2628.Google Scholar
  63. Deininger, P.L., Tiedge, H., Kim, J., and Brosius, J. (1996). Evolution, expression, and possible function of a master gene for amplification of an interspersed repeated DNA family in rodents. Prog Nucleic Acid Re 52, 67–88.Google Scholar
  64. del Rosario, R.C.H., Rayan, N.A., and Prabhakar, S. (2014). Noncoding origins of anthropoid traits and a new null model of transposon functionalization. Genome Res 24, 1469–1484.Google Scholar
  65. Dennett, D.C. (1995). Darwin’s Dangerous Idea (New York: Simon & Schuster).Google Scholar
  66. Dewannieux, M., and Heidmann, T. (2005). LINEs, SINEs and processed pseudogenes: parasitic strategies for genome modeling. Cytogenet Genome Res 110, 35–48.Google Scholar
  67. Dewannieux, M., and Heidmann, T. (2013). Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr Opin Virol 3, 646–656.Google Scholar
  68. Dickel, D.E., Ypsilanti, A.R., Pla, R., Zhu, Y., Barozzi, I., Mannion, B.J., Khin, Y.S., Fukuda-Yuzawa, Y., Plajzer-Frick, I., Pickle, C.S., et al. (2018). Ultraconserved enhancers are required for normal development. Cell 172, 491–499.e15.Google Scholar
  69. Ding, Y., Zhao, L., Yang, S., Jiang, Y., Chen, Y., Zhao, R., Zhang, Y., Zhang, G., Dong, Y., Yu, H., et al. (2010). A young Drosophila duplicate gene plays essential roles in spermatogenesis by regulating several Y-linked male fertility genes. PLoS Genet 6, e1001255.Google Scholar
  70. Doolittle, W.F., and Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603.Google Scholar
  71. Drezen, J.M., Gauthier, J., Josse, T., Bézier, A., Herniou, E., and Huguet, E. (2017). Foreign DNA acquisition by invertebrate genomes. J Invertebrate Pathol 147, 157–168.Google Scholar
  72. Dupressoir, A., Lavialle, C., and Heidmann, T. (2012). From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33, 663–671.Google Scholar
  73. Eisenberg, E. (2016). Proteome diversification by genomic parasites. Genome Biol 17, 17.Google Scholar
  74. Elbarbary, R.A., Lucas, B.A., and Maquat, L.E. (2016). Retrotransposons as regulators of gene expression. Science 351, aac7247.Google Scholar
  75. Elbarbary, R.A., and Maquat, L.E. (2017). Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism. Nat Struct Mol Biol 24, 496–498.Google Scholar
  76. Ellison, C.E., and Bachtrog, D. (2013). Dosage compensation via transposable element mediated rewiring of a regulatory network. Science 342, 846–850.Google Scholar
  77. Emera, D., Casola, C., Lynch, V.J., Wildman, D.E., Agnew, D., and Wagner, G.P. (2012). Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements. Mol Biol Evol 29, 239–247.Google Scholar
  78. Emera, D., Yin, J., Reilly, S.K., Gockley, J., and Noonan, J.P. (2016). Origin and evolution of developmental enhancers in the mammalian neocortex. Proc Natl Acad Sci USA 113, e2617–E2626.Google Scholar
  79. Estécio, M.R.H., Gallegos, J., Dekmezian, M., Lu, Y., Liang, S., and Issa, J. P.J. (2012). SINE retrotransposons cause epigenetic reprogramming of adjacent gene promoters. Mol Cancer Res 10, 1332–1342.Google Scholar
  80. Farré, D., Engel, P., and Angulo, A. (2016). Novel role of 3′UTR-embedded Alu elements as facilitators of processed pseudogene genesis and host gene capture by viral genomes. PLoS ONE 11, e0169196.Google Scholar
  81. Faulkner, G.J., Kimura, Y., Daub, C.O., Wani, S., Plessy, C., Irvine, K.M., Schroder, K., Cloonan, N., Steptoe, A.L., Lassmann, T., et al. (2009). The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41, 563–571.Google Scholar
  82. Fielder, D.P. (2012). Seasonal and diel dive performance and behavioral ecology of the bimodally respiring freshwater turtle Myuchelys bellii of eastern Australia. J Comp Physiol A 198, 129–143.Google Scholar
  83. Fuentes, D.R., Swigut, T., and Wysocka, J. (2018). Systematic perturbation of retroviral LTRs reveals widespread long-range effects on human gene regulation. Elife 7, pii: e35989.Google Scholar
  84. Galindo-González, L., Mhiri, C., Deyholos, M.K., and Grandbastien, M.A. (2017). LTR-retrotransposons in plants: Engines of evolution. Gene 626, 14–25.Google Scholar
  85. Garcia-Perez, J.L., Widmann, T.J., and Adams, I.R. (2016). The impact of transposable elements on mammalian development. Development 143, 4101–4114.Google Scholar
  86. Gardiner, D.M., Kazan, K., and Manners, J.M. (2013). Cross-kingdom gene transfer facilitates the evolution of virulence in fungal pathogens. Plant Sci 210, 151–158.Google Scholar
  87. Gavelis, G.S., Keeling, P.J., and Leander, B.S. (2017). How exaptations facilitated photosensory evolution: Seeing the light by accident. Bioessays 39.Google Scholar
  88. Ge, S.X. (2017). Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genomics 18, 200.Google Scholar
  89. Ghaly, T.M., and Gillings, M.R. (2018). Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol 26, 904–912.Google Scholar
  90. Gilbert-Kawai, E.T., Milledge, J.S., Grocott, M.P., and Martin, D.S. (2014). King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude. Physiology (Bethesda) 29, 388–402.Google Scholar
  91. Gladyshev, E.A., Meselson, M., and Arkhipova, I.R. (2008). Massive horizontal gene transfer in bdelloid rotifers. Science 320, 1210–1213.Google Scholar
  92. Glinsky, G.V. (2015). Transposable elements and DNA methylation create in embryonic stem cells human-specific regulatory sequences associated with distal enhancers and noncoding RNAs. Genome Biol Evol 7, 1432–1454.Google Scholar
  93. Gophna, U., Charlebois, R.L., and Doolittle, W.F. (2006). Ancient lateral gene transfer in the evolution of Bdellovibrio bacteriovorus. Trends MicroBiol 14, 64–69.Google Scholar
  94. Gould, S.J. (1991). Exaptation: a crucial tool for an evolutionary psychology. J Social Issues 47, 43–65.Google Scholar
  95. Gould, S.J. (2002). The Structure of Evolutionary Theory (Cambridge, MA: Belknap, Harvard University Press).Google Scholar
  96. Gould, S.J., and Lewontin, R.C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc B-Biol Sci 205, 581–598.Google Scholar
  97. Gould, S.J., and Vrba, E.S. (1982). Exaptation—a missing term in the science of form. Paleobiology 8, 4–15.Google Scholar
  98. Gubala, A.M., Schmitz, J.F., Kearns, M.J., Vinh, T.T., Bornberg-Bauer, E., Wolfner, M.F., and Findlay, G.D. (2017). The Goddard and Saturn genes are essential for Drosophila male fertility and may have arisen de novo. Mol Biol Evol 34, 1066–1082.Google Scholar
  99. Haig, D. (2016). Transposable elements: Self-seekers of the germline, team-players of the soma. BioEssays 38, 1158–1166.Google Scholar
  100. Hall, J.P.J., Brockhurst, M.A., and Harrison, E. (2017). Sampling the mobile gene pool: innovation via horizontal gene transfer in bacteria. Philos Trans R Soc Lond B Biol Sci 372, pii: 20160424.Google Scholar
  101. Harmston, N., Baresic, A., and Lenhard, B. (2013). The mystery of extreme non-coding conservation. Philos Trans R Soc B-Biol Sci 368, 20130021.Google Scholar
  102. Heinen, T.J.A.J., Staubach, F., Häming, D., and Tautz, D. (2009). Emergence of a new gene from an intergenic region. Curr Biol 19, 1527–1531.Google Scholar
  103. Hezroni, H., Ben-Tov Perry, R., Meir, Z., Housman, G., Lubelsky, Y., and Ulitsky, I. (2017). A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes. Genome Biol 18, 162.Google Scholar
  104. Hirsch, C.D., and Springer, N.M. (2017). Transposable element influences on gene expression in plants. Biochim Biophys Acta Gene Regul Mech 1860, 157–165.Google Scholar
  105. Hoffman, Y., Dahary, D., Bublik, D.R., Oren, M., and Pilpel, Y. (2013). The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics 29, 894–902.Google Scholar
  106. Hoffman, Y., Pilpel, Y., and Oren, M. (2014). microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol 6, 192–197.Google Scholar
  107. Holdt, L.M., Hoffmann, S., Sass, K., Langenberger, D., Scholz, M., Krohn, K., Finstermeier, K., Stahringer, A., Wilfert, W., Beutner, F., et al. (2013). Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet 9, e1003588.Google Scholar
  108. Hu, Q.D., Tanasa, B., Trabucchi, M., Li, W., Zhang, J., Ohgi, K.A., Rose, D.W., Glass, C.K., and Rosenfeld, M.G. (2012). DICER-and AGO3-dependent generation of retinoic acid-induced DR2 Alu RNAs regulates human stem cell proliferation. Nat Struct Mol Biol 19, 1168–1175.Google Scholar
  109. Huda, A., Mariño-Ramírez, L., and Jordan, I.K. (2010). Epigenetic histone modifications of human transposable elements: genome defense versus exaptation. Mobile DNA 1, 2.Google Scholar
  110. Huda, A., Tyagi, E., Mariño-Ramírez, L., Bowen, N.J., Jjingo, D., and Jordan, I.K. (2011). Prediction of transposable element derived enhancers using chromatin modification profiles. PLoS ONE 6, e27513.Google Scholar
  111. Hunt, G.R., Gray, R.D., and Taylor, A.H. (2013). Why is tool use rare in animals? In Tool Use in Animals: Cognition and Ecology, C. Sanz, C. Boesch, and J. Call, eds. (Cambridge: Cambridge University Press), pp. 89–118.Google Scholar
  112. Husnik, F., and McCutcheon, J.P. (2018). Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Micro 16, 67–79.Google Scholar
  113. Ilardo, M.A., Moltke, I., Korneliussen, T.S., Cheng, J., Stern, A.J., Racimo, F., de Barros Damgaard, P., Sikora, M., Seguin-Orlando, A., Rasmussen, S., et al. (2018). Physiological and genetic adaptations to diving in sea nomads. Cell 173, 569–580.e15.Google Scholar
  114. Ivanova, E., Berger, A., Scherrer, A., Alkalaeva, E., and Strub, K. (2015). Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Nucleic Acids Res 43, 2874–2887.Google Scholar
  115. Jacques, P.É., Jeyakani, J., and Bourque, G. (2013). The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9, e1003504.Google Scholar
  116. Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., Marzluff, W.F., and Sharpless, N.E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157.Google Scholar
  117. Jeffares, D.C., Poole, A.M., and Penny, D. (1998). Relics from the RNA world. J Mol Evol 46, 18–36.Google Scholar
  118. Jiang, L., Li, T., Zhang, X., Zhang, B., Yu, C., Li, Y., Fan, S., Jiang, X., Khan, T., Hao, Q., et al. (2017). RPL10L is required for male meiotic division by compensating for RPL10 during meiotic sex chromosome inactivation in mice. Curr Biol 27, 1498–1505.e6.Google Scholar
  119. Joly-Lopez, Z., and Bureau, T.E. (2018). Exaptation of transposable element coding sequences. Curr Opin Genets Dev 49, 34–42.Google Scholar
  120. Jørgensen, C.B. (1998). Role of urinary and cloacal bladders in chelonian water economy: historical and comparative perspectives. Biol Rev 73, 347–366.Google Scholar
  121. Joyce, G.F., and Szostak, J.W. (2018). Protocells and RNA self-replication. Cold Spring Harb Perspect Biol 10, pii: a034801.Google Scholar
  122. Jung, J., Lee, S., Cho, H.S., Park, K., Ryu, J.W., Jung, M., Kim, J., Kim, H., and Kim, D.S. (2018). Bioinformatic analysis of regulation of natural antisense transcripts by transposable elements in human mRNA. Genomics, pii: S0888-7543(18)30025-9.Google Scholar
  123. Kapusta, A., Kronenberg, Z., Lynch, V.J., Zhuo, X., Ramsay, L.A., Bourque, G., Yandell, M., and Feschotte, C. (2013). Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9, e1003470.Google Scholar
  124. Kelley, D., and Rinn, J. (2012). Transposable elements reveal a stem cellspecific class of long noncoding RNAs. Genome Biol 13, R107.Google Scholar
  125. Kelley, D.R., Hendrickson, D.G., Tenen, D., and Rinn, J.L. (2014). Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol 15, 537.Google Scholar
  126. Kemkemer, C., and Long, M. (2014). New genes important for development. EMBO Rep 15, 460–461.Google Scholar
  127. Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., and Haussler, D. (2003). Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci USA 100, 11484–11489.Google Scholar
  128. Keren, H., Lev-Maor, G., and Ast, G. (2010). Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11, 345–355.Google Scholar
  129. Khanam, T., Rozhdestvensky, T.S., Bundman, M., Galiveti, C.R., Handel, S., Sukonina, V., Jordan, U., Brosius, J., and Skryabin, B.V. (2007). Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners. Nucleic Acids Res 35, 529–539.Google Scholar
  130. Kim, E., Goren, A., and Ast, G. (2008). Alternative splicing and disease. RNA Biol 5, 17–19.Google Scholar
  131. Kim, Y.J., Lee, J., and Han, K. (2012). Transposable elements: no more ‘junk DNA’. Genomics Inform 10, 226–233.Google Scholar
  132. Kingsolver, J.G., and Koehl, M.A.R. (1985). Aerodynamics, thermoregulation, and the evolution of insect wings: differential scaling and evolutionary change. Evolution 39, 488–504.Google Scholar
  133. Klasberg, S., Bitard-Feildel, T., Callebaut, I., and Bornberg-Bauer, E. (2018). Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J 285, 2605–2625.Google Scholar
  134. Koch, A.L. (1972). Enzyme evolution. I. The importance of untranslatable intermediates. Genetics 72, 297–316.Google Scholar
  135. Kondrashov, A.V., Kiefmann, M., Ebnet, K., Khanam, T., Muddashetty, R. S., and Brosius, J. (2005). Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 353, 88–103.Google Scholar
  136. Koonin, E.V. (2016). Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res 5, pii: F1000 Faculty Rev-1805.Google Scholar
  137. Koonin, E.V., and Krupovic, M. (2018). The depths of virus exaptation. Curr Opin Virol 31, 1–8.Google Scholar
  138. Kriegs, J.O., Schmitz, J., Makalowski, W., and Brosius, J. (2005). Does the AD7c-NTP locus encode a protein? Biochim Biophys Acta 1727, 1–4.Google Scholar
  139. Krull, M., Brosius, J., and Schmitz, J. (2005). Alu-SINE exonization: en route to protein-coding function. Mol Biol Evol 22, 1702–1711.Google Scholar
  140. Krull, M., Petrusma, M., Makalowski, W., Brosius, J., and Schmitz, J. (2007). Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res 17, 1139–1145.Google Scholar
  141. Kuryshev, V.Y., Skryabin, B.V., Kremerskothen, J., Jurka, J., and Brosius, J. (2001). Birth of a gene: locus of neuronal BC200 snmRNA in three prosimians and human BC200 pseudogenes as archives of change in the Anthropoidea lineage. J Mol Biol 309, 1049–1066.Google Scholar
  142. Lacroix, B., and Citovsky, V. (2018). Beyond agrobacterium-mediated transformation: horizontal gene transfer from bacteria to eukaryotes. Curr Top Microbiol Immunol 418, 443–462.Google Scholar
  143. Larsen, P.A., Hunnicutt, K.E., Larsen, R.J., Yoder, A.D., and Saunders, A. M. (2018). Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Res 26, 93–111.Google Scholar
  144. Larson, G., Stephens, P.A., Tehrani, J.J., and Layton, R.H. (2013). Exapting exaptation. Trends Ecol Evol 28, 497–498.Google Scholar
  145. Lavi, E., and Carmel, L. (2018). Alu exaptation enriches the human transcriptome by introducing new gene ends. RNA Biol 15, 715–725.Google Scholar
  146. Lee, H.E., Ayarpadikannan, S., and Kim, H.S. (2015). Role of transposable elements in genomic rearrangement, evolution, gene regulation and epigenetics in primates. Genes Genet Syst 90, 245–257.Google Scholar
  147. Lev-Maor, G., Sorek, R., Shomron, N., and Ast, G. (2003). The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300, 1288–1291.Google Scholar
  148. Levy, A., Sela, N., and Ast, G. (2008). TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res 36, D47–D52.Google Scholar
  149. Lewejohann, L., Skryabin, B.V., Sachser, N., Prehn, C., Heiduschka, P., Thanos, S., Jordan, U., Dell’Omo, G., Vyssotski, A.L., Pleskacheva, M. G., et al. (2004). Role of a neuronal small non-messenger RNA: behavioural alterations in BC1 RNA-deleted mice. Behavioural Brain Res 154, 273–289.Google Scholar
  150. Lewis, E.B. (1951). Pseudoallelism and gene evolution. Cold Spring Harb Symp Quant Biol 16, 159–174.Google Scholar
  151. Li, D., Dong, Y., Jiang, Y., Jiang, H., Cai, J., and Wang, W. (2010). A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res 20, 408–420.Google Scholar
  152. Li, X., Liang, J., Yu, H., Su, B., Xiao, C., Shang, Y., and Wang, W. (2007). Functional consequences of new exon acquisition in mammalian chromodomain Y-like (CDYL) genes. Trends Genets 23, 427–431.Google Scholar
  153. Liang, K.H., and Yeh, C.T. (2013). A gene expression restriction network mediated by sense and antisense Alu sequences located on proteincoding messenger RNAs. BMC Genomics 14, 325.Google Scholar
  154. Lin, L., Jiang, P., Park, J.W., Wang, J., Lu, Z.X., Lam, M.P.Y., Ping, P., and Xing, Y. (2016). The contribution of Alu exons to the human proteome. Genome Biol 17, 15.Google Scholar
  155. Long, M., Betrán, E., Thornton, K., and Wang, W. (2003a). The origin of new genes: glimpses from the young and old. Nat Rev Genet 4, 865–875.Google Scholar
  156. Long, M. (2003b). Origin of new genes: evidence from experimental and computational analyses. Genetica 118, 171–182.Google Scholar
  157. Long, M., and Langley, C.H. (1993). Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260, 91–95.Google Scholar
  158. Long, M., VanKuren, N.W., Chen, S., and Vibranovski, M.D. (2013). New gene evolution: little did we know. Annu Rev Genet 47, 307–333.Google Scholar
  159. Lowe, C.B., and Haussler, D. (2012). 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome. PLoS ONE 7, e43128.Google Scholar
  160. Lubelsky, Y., and Ulitsky, I. (2018). Sequences enriched in Alu repeats drive nuclear localization of long RNAs in human cells. Nature 555, 107–111.Google Scholar
  161. Lucas, B.A., Lavi, E., Shiue, L., Cho, H., Katzman, S., Miyoshi, K., Siomi, M.C., Carmel, L., Ares Jr., M., and Maquat, L.E. (2018). Evidence for convergent evolution of SINE-directed Staufen-mediated mRNA decay. Proc Natl Acad Sci USA 115, 968–973.Google Scholar
  162. Ludwig, A., Rozhdestvensky, T.S., Kuryshev, V.Y., Schmitz, J., and Brosius, J. (2005). An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J Mol Biol 350, 200–214.Google Scholar
  163. Lunyak, V.V., Prefontaine, G.G., Núñez, E., Cramer, T., Ju, B.G., Ohgi, K. A., Hutt, K., Roy, R., García-Díaz, A., Zhu, X., et al. (2007). Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis. Science 317, 248–251.Google Scholar
  164. Lynch, V.J., Nnamani, M.C., Kapusta, A., Brayer, K., Plaza, S.L., Mazur, E. C., Emera, D., Sheikh, S.Z., Grützner, F., Bauersachs, S., et al. (2015). Ancient transposable elements transformed the uterine regulatory landscape and transcriptome during the evolution of mammalian pregnancy. Cell Rep 10, 551–561.Google Scholar
  165. Makałowski, W., Mitchell, G.A., and Labuda, D. (1994). Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genets 10, 188–193.Google Scholar
  166. Mandal, A.K., Pandey, R., Jha, V., and Mukerji, M. (2013). Transcriptome-wide expansion of non-coding regulatory switches: evidence from cooccurrence of Alu exonization, antisense and editing. Nucleic Acids Res 41, 2121–2137.Google Scholar
  167. Martignetti, J.A., and Brosius, J. (1993a). BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element.. Proc Natl Acad Sci USA 90, 11563–11567.Google Scholar
  168. Martignetti, J.A., and Brosius, J. (1993b). Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc Natl Acad Sci USA 90, 9698–9702.Google Scholar
  169. Martignetti, J.A., and Brosius, J. (1995). BC1 RNA: transcriptional analysis of a neural cell-specific RNA polymerase III transcript.. Mol Cell Biol 15, 1642–1650.Google Scholar
  170. Martin, W.F. (2017). Too much eukaryote LGT. Bioessays 39.Google Scholar
  171. Matsui, H., Hunt, G.R., Oberhofer, K., Ogihara, N., McGowan, K.J., Mithraratne, K., Yamasaki, T., Gray, R.D., and Izawa, E. (2016). Adaptive bill morphology for enhanced tool manipulation in New Caledonian crows. Sci Rep 6, 22776.Google Scholar
  172. McCarrey, J.R., and Thomas, K. (1987). Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326, 501–505.Google Scholar
  173. McLaughlin, R.N., Young, J.M., Yang, L., Neme, R., Wichman, H.A., and Malik, H.S. (2014). Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet 10, e1004531.Google Scholar
  174. Medstrand, P., Landry, J.R., and Mager, D.L. (2001). Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 276, 1896–1903.Google Scholar
  175. Méheust, R., Watson, A.K., Lapointe, F.J., Papke, R.T., Lopez, P., and Bapteste, E. (2018). Hundreds of novel composite genes and chimeric genes with bacterial origins contributed to haloarchaeal evolution. Genome Biol 19, 75.Google Scholar
  176. Mi, S., Lee, X., Li, X., Veldman, G.M., Finnerty, H., Racie, L., LaVallie, E., Tang, X.Y., Edouard, P., Howes, S., et al. (2000). Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789.Google Scholar
  177. Mo, D., Raabe, C.A., Reinhardt, R., Brosius, J., and Rozhdestvensky, T.S. (2013). Alternative processing as evolutionary mechanism for the origin of novel nonprotein coding RNAs. Genome Biol Evol 5, 2061–2071.Google Scholar
  178. Monte, S.M., Ghanbari, K., Frey, W.H., Beheshti, I., Averback, P., Hauser, S.L., Ghanbari, H.A., and Wands, J.R. (1997). Characterization of the AD7C-NTP cDNA expression in Alzheimer’s disease and measurement of a 41-kD protein in cerebrospinal fluid.. J Clin Invest 100, 3093–3104.Google Scholar
  179. Moore, A.D., Björklund, A.K., Ekman, D., Bornberg-Bauer, E., and Elofsson, A. (2008). Arrangements in the modular evolution of proteins. Trends Biochem Sci 33, 444–451.Google Scholar
  180. Morales, M.E., White, T.B., Streva, V.A., DeFreece, C.B., Hedges, D.J., and Deininger, P.L. (2015). The contribution of alu elements to mutagenic DNA double-strand break repair. PLoS Genet 11, e1005016.Google Scholar
  181. Morales-Hernández, A., González-Rico, F.J., Román, A.C., Rico-Leo, E., Alvarez-Barrientos, A., Sánchez, L., Macia, Á., Heras, S.R., García-Pérez, J.L., Merino, J.M., et al. (2016). Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res 44, 4665–4683.Google Scholar
  182. Moyers, B.A., and Zhang, J. (2016). Evaluating phylostratigraphic evidence for widespread de novo gene birth in genome evolution. Mol Biol Evol 33, 1245–1256.Google Scholar
  183. Muller, H.J. (1935). The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere. Genetics 17, 237–252.Google Scholar
  184. Nakanishi, A., Kobayashi, N., Suzuki-Hirano, A., Nishihara, H., Sasaki, T., Hirakawa, M., Sumiyama, K., Shimogori, T., and Okada, N. (2012). A SINE-derived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8. PLoS ONE 7, e43785.Google Scholar
  185. Nefedova, L.N., Kuzmin, I.V., Makhnovskii, P.A., and Kim, A.I. (2014). Domesticated retroviral GAG gene in Drosophila: new functions for an old gene. Virology 450–451, 196–204.Google Scholar
  186. Nei, M. (1969). Gene duplication and nucleotide substitution in evolution. Nature 221, 40–42.Google Scholar
  187. Nekrutenko, A., Makova, K.D., and Li, W.H. (2002). The KA/KS ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. Genome Res 12, 198–202.Google Scholar
  188. Nelson, A.C., and Wardle, F.C. (2013). Conserved non-coding elements and cis regulation: actions speak louder than words. Development 140, 1385–1395.Google Scholar
  189. Neme, R., Amador, C., Yildirim, B., McConnell, E., and Tautz, D. (2017). Random sequences are an abundant source of bioactive RNAs or peptides. Nat ecol evol 1, 0127.Google Scholar
  190. Neme, R., and Tautz, D. (2014). Evolution: dynamics of de novo gene emergence. Curr Biol 24, R238–R240.Google Scholar
  191. Neme, R., and Tautz, D. (2016). Fast turnover of genome transcription across evolutionary time exposes entire non-coding DNA to de novo gene emergence. eLife 5, e09977.Google Scholar
  192. Nishihara, H., Kobayashi, N., Kimura-Yoshida, C., Yan, K., Bormuth, O., Ding, Q., Nakanishi, A., Sasaki, T., Hirakawa, M., Sumiyama, K., et al. (2016). Coordinately co-opted multiple transposable elements constitute an enhancer for wnt5a expression in the mammalian secondary palate. PLoS Genet 12, e1006380.Google Scholar
  193. Nissimov, J.I., Pagarete, A., Ma, F., Cody, S., Dunigan, D.D., Kimmance, S.A., and Allen, M.J. (2017). Coccolithoviruses: a review of crosskingdom genomic thievery and metabolic thuggery. Viruses 9, pii: E52.Google Scholar
  194. Notwell, J.H., Chung, T., Heavner, W., and Bejerano, G. (2015). A family of transposable elements co-opted into developmental enhancers in the mouse neocortex. Nat Commun 6, 6644.Google Scholar
  195. Ohno, S. (1970). Evolution by gene duplication (Berlin: Springer Verlag).Google Scholar
  196. Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symp Biol 23, 366–370.Google Scholar
  197. Ohno, S., Wolf, U., and Atkin, N.B. (1968). Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187.Google Scholar
  198. Okada, N., Sasaki, T., Shimogori, T., and Nishihara, H. (2010). Emergence of mammals by emergency: exaptation. Genes Cells 15, 801–812.Google Scholar
  199. Orgel, L.E., and Crick, F.H.C. (1980). Selfish DNA: the ultimate parasite. Nature 284, 604–607.Google Scholar
  200. Palmer, A.A., and Dulawa, S.C. (2010). Murine warriors or worriers: the saga of Comt1, B2 SINE elements, and the future of translational genetics. Front Neurosci 4, 177.Google Scholar
  201. Pandey, R., Bhattacharya, A., Bhardwaj, V., Jha, V., Mandal, A.K., and Mukerji, M. (2016). Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection. Sci Rep 6, 32348.Google Scholar
  202. Park, E., and Maquat, L.E. (2013). Staufen-mediated mRNA decay. WIREs RNA 4, 423–435.Google Scholar
  203. Pauli, A., Valen, E., and Schier, A.F. (2015). Identifying (non-)coding RNAs and small peptides: challenges and opportunities. BioEssays 37, 103–112.Google Scholar
  204. Pei, B., Sisu, C., Frankish, A., Howald, C., Habegger, L., Mu, X.J., Harte, R., Balasubramanian, S., Tanzer, A., Diekhans, M., et al. (2012). The GENCODE pseudogene resource. Genome Biol 13, R51.Google Scholar
  205. Peng, L. (2005). Origin and evolution of new exons in the rodent zinc finger protein 39 gene. Chin Sci Bull 50, 1126–1130.Google Scholar
  206. Phillips, P.K., and Heath, J.E. (1992). Heat exchange by the pinna of the african elephant (Loxodonta africana). Comp Biochem Physiol Part A Physiol 101, 693–699.Google Scholar
  207. Piatigorsky, J., and Wistow, G. (1991). The recruitment of crystallins: new functions precede gene duplication. Science 252, 1078–1079.Google Scholar
  208. Piya, S., Bennett, M., Rambani, A., and Hewezi, T. (2017). Transcriptional activity of transposable elements may contribute to gene expression changes in the syncytium formed by cyst nematode in arabidopsis roots. Plant Signal Behav 12, e1362521.Google Scholar
  209. Platt, R.N., Vandewege, M.W., and Ray, D.A. (2018). Mammalian transposable elements and their impacts on genome evolution. Chromosome Res 26, 25–43.Google Scholar
  210. Podbevšek, P., Fasolo, F., Bon, C., Cimatti, L., Reißer, S., Carninci, P., Bussi, G., Zucchelli, S., Plavec, J., and Gustincich, S. (2018). Structural determinants of the SINE B2 element embedded in the long non-coding RNA activator of translation AS Uchl1. Sci Rep 8, 3189.Google Scholar
  211. Polesskaya, O., Kananykhina, E., Roy-Engel, A.M., Nazarenko, O., Kulemzina, I., Baranova, A., Vassetsky, Y., and Myakishev-Rempel, M. (2018). The role of Alu-derived RNAs in Alzheimer’s and other neurodegenerative conditions. Med Hypotheses 115, 29–34.Google Scholar
  212. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W.J., and Pandolfi, P.P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038.Google Scholar
  213. Ponicsan, S.L., Kugel, J.F., and Goodrich, J.A. (2010). Genomic gems: SINE RNAs regulate mRNA production. Curr Opin Genets Dev 20, 149–155.Google Scholar
  214. Post, T.W., Arce, M.A., Liszewski, M.K., Thompson, E.S., Atkinson, J.P., and Lublin, D.M. (1990). Structure of the gene for human complement protein decay accelerating factor. J Immunol 144, 740–744.Google Scholar
  215. Potrzebowski, L., Vinckenbosch, N., Marques, A.C., Chalmel, F., Jégou, B., and Kaessmann, H. (2008). Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6, e80.Google Scholar
  216. Raj, A., and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226.Google Scholar
  217. Ram, O., Schwartz, S., and Ast, G. (2008). Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol Cell Biol 28, 3513–3525.Google Scholar
  218. Rayan, N.A., Del Rosario, R.C.H., and Prabhakar, S. (2016). Massive contribution of transposable elements to mammalian regulatory sequences. Sem Cell Dev Biol 57, 51–56.Google Scholar
  219. Rebollo, R., Romanish, M.T., and Mager, D.L. (2012). Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46, 21–42.Google Scholar
  220. Rosikiewicz, W., Kabza, M., Kosinski, J.G., Ciomborowska-Basheer, J., Kubiak, M.R., and Makalowska, I. (2017). RetrogeneDB-a database of plant and animal retrocopies. Database (Oxford) 2017.Google Scholar
  221. Rohrmoser, M., Kluge, M., Yahia, Y., Gruber-Eber, A., Maqbool, M.A., Forné, I., Krebs, S., Blum, H., Greifenberg, A.K., Geyer, M., et al. (2018). MIR sequences recruit zinc finger protein ZNF768 to expressed genes. Nucleic Acids Res 107.Google Scholar
  222. Rote, N.S., Chakrabarti, S., and Stetzer, B.P. (2004). The role of human endogenous retroviruses in trophoblast differentiation and placental development. Placenta 25, 673–683.Google Scholar
  223. Sasaki, T., Nishihara, H., Hirakawa, M., Fujimura, K., Tanaka, M., Kokubo, N., Kimura-Yoshida, C., Matsuo, I., Sumiyama, K., Saitou, N., et al. (2008). Possible involvement of SINEs in mammalian-specific brain formation. Proc Natl Acad Sci USA 105, 4220–4225.Google Scholar
  224. Schmitz, J. (2012). SINEs as driving forces in genome evolution. Genome Dyn 7, 92–107.Google Scholar
  225. Schmitz, J., and Brosius, J. (2011). Exonization of transposed elements: A challenge and opportunity for evolution. Biochimie 93, 1928–1934.Google Scholar
  226. Schmitz, J.F., and Bornberg-Bauer, E. (2017). Fact or fiction: updates on how protein-coding genes might emerge de novo from previously noncoding DNA. F1000Res 6, 57.Google Scholar
  227. Sieber, K.B., Bromley, R.E., and Dunning Hotopp, J.C. (2017). Lateral gene transfer between prokaryotes and eukaryotes. Exp Cell Res 358, 421–426.Google Scholar
  228. Simonson, T.S., Yang, Y., Huff, C.D., Yun, H., Qin, G., Witherspoon, D.J., Bai, Z., Lorenzo, F.R., Xing, J., Jorde, L.B., et al. (2010). Genetic evidence for high-altitude adaptation in Tibet. Science 329, 72–75.Google Scholar
  229. Simonti, C.N., Pavlicev, M., and Capra, J.A. (2017). Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints. Mol Biol Evol 34, 2856–2869.Google Scholar
  230. Singer, S.S., Männel, D.N., Hehlgans, T., Brosius, J., and Schmitz, J. (2004). From “junk” to gene: curriculum vitae of a primate receptor isoform gene. J Mol Biol 341, 883–886.Google Scholar
  231. Smalheiser, N.R., and Torvik, V.I. (2006). Alu elements within human mRNAs are probable microRNA targets. Trends Genets 22, 532–536.Google Scholar
  232. Smith, H.M., and James, L.F. (1958). The taxonomic significance of cloacal bursae in turtles. Trans Kansas Acad Sci 61, 86–96.Google Scholar
  233. Soares, M.B., Schon, E., Henderson, A., Karathanasis, S.K., Cate, R., Zeitlin, S., Chirgwin, J., and Efstratiadis, A. (1985). RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon.. Mol Cell Biol 5, 2090–2103.Google Scholar
  234. Song, X., and Cao, X. (2017). Transposon-mediated epigenetic regulation contributes to phenotypic diversity and environmental adaptation in rice. Curr Opin Plant Biol 36, 111–118.Google Scholar
  235. Sorek, R., Ast, G., and Graur, D. (2002). Alu-containing exons are alternatively spliced. Genome Res 12, 1060–1067.Google Scholar
  236. Sorek, R., Lev-Maor, G., Reznik, M., Dagan, T., Belinky, F., Graur, D., and Ast, G. (2004). Minimal conditions for exonization of intronic sequences. Mol Cell 14, 221–231.Google Scholar
  237. Stephens, S.G. (1951). Possible significances of duplication in evolution. Adv Genet 4, 247–265.Google Scholar
  238. Storz, J.F., and Moriyama, H. (2008). Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Altitude Med Biol 9, 148–157.Google Scholar
  239. Struhl, K. (2007). Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat Struct Mol Biol 14, 103–105.Google Scholar
  240. Su, M., Han, D., Boyd-Kirkup, J., Yu, X., and Han, J.D.J. (2014). Evolution of Alu elements toward enhancers. Cell Rep 7, 376–385.Google Scholar
  241. Sundaram, V., Cheng, Y., Ma, Z., Li, D., Xing, X., Edge, P., Snyder, M.P., and Wang, T. (2014). Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res 24, 1963–1976.Google Scholar
  242. Sundaram, V., and Wang, T. (2018). Transposable element mediated innovation in gene regulatory landscapes of cells: re-visiting the “genebattery” model. Bioessays 40.Google Scholar
  243. Tait, L. (1879). The use of tails. Nature, 603.Google Scholar
  244. Tajaddod, M., Tanzer, A., Licht, K., Wolfinger, M.T., Badelt, S., Huber, F., Pusch, O., Schopoff, S., Janisiw, M., Hofacker, I., et al. (2016). Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biol 17, 220.Google Scholar
  245. Tashiro, K., Teissier, A., Kobayashi, N., Nakanishi, A., Sasaki, T., Yan, K., Tarabykin, V., Vigier, L., Sumiyama, K., Hirakawa, M., et al. (2011). A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons. PLoS ONE 6, e28497.Google Scholar
  246. Tattersall, I. (2010). Human evolution and cognition. Theor Biosci 129, 193–201.Google Scholar
  247. Tautz, D. (2014). The discovery of de novo gene evolution. Perspect Biol Med 57, 149–161.Google Scholar
  248. Tautz, D., and Domazet-Lošo, T. (2011). The evolutionary origin of orphan genes. Nat Rev Genet 12, 692–702.Google Scholar
  249. Tiedge, H., Chen, W., and Brosius, J. (1993). Primary structure, neuralspecific expression, and dendritic location of human BC200 RNA. J Neurosci 13, 2382–2390.Google Scholar
  250. Tiedge, H., Fremeau Jr., R.T., Weinstock, P.H., Arancio, O., and Brosius, J. (1991). Dendritic location of neural BC1 RNA. Proc Natl Acad Sci USA 88, 2093–2097.Google Scholar
  251. Touchon, M., Moura de Sousa, J.A., and Rocha, E.P. (2017). Embracing the enemy: the diversification of microbial gene repertoires by phagemediated horizontal gene transfer. Curr Opin Microbiol 38, 66–73.Google Scholar
  252. Trizzino, M., Kapusta, A., and Brown, C.D. (2018). Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468.Google Scholar
  253. Trizzino, M., Park, Y.S., Holsbach-Beltrame, M., Aracena, K., Mika, K., Caliskan, M., Perry, G.H., Lynch, V.J., and Brown, C.D. (2017). Transposable elements are the primary source of novelty in primate gene regulation. Genome Res 27, 1623–1633.Google Scholar
  254. Ulbricht, R.J., and Emeson, R.B. (2014). One hundred million adenosineto-inosine RNA editing sites: hearing through the noise. Bioessays 36, 730–735.Google Scholar
  255. Ulitsky, I., and Bartel, D.P. (2013). lincRNAs: genomics, evolution, and mechanisms. Cell 154, 26–46.Google Scholar
  256. van de Lagemaat, L.N., Landry, J.R., Mager, D.L., and Medstrand, P. (2003). Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genets 19, 530–536Google Scholar
  257. VanKuren, N.W., and Long, M. (2018). Gene duplicates resolving sexual conflict rapidly evolved essential gametogenesis functions. Nat Ecol Evol 2, 705–712.Google Scholar
  258. Volff, J.N. (2005). Retrotransposable elements and genome evolution (Basel: S. Karger).Google Scholar
  259. Volff, J.N., and Brosius, J. (2007). Modern genomes with retro-look: retrotransposed elements, retroposition and the origin of new genes. Genome Dyn 3, 175–190.Google Scholar
  260. Vos, M., Hesselman, M.C., Te Beek, T.A., van Passel, M.W.J., and Eyre-Walker, A. (2015). Rates of lateral gene transfer in prokaryotes: high but why? Trends Microbiol 23, 598–605.Google Scholar
  261. Wade, J.T., and Grainger, D.C. (2018). Spurious transcription and its impact on cell function. Transcription 9, 182–189.Google Scholar
  262. Wallace, A.R. (1889). Darwinism, 1st edn (London: Macmillan).Google Scholar
  263. Wallace, M.R., Andersen, L.B., Saulino, A.M., Gregory, P.E., Glover, T.W., and Collins, F.S. (1991). A de novo Alu insertion results in neurofibromatosis type 1. Nature 353, 864–866.Google Scholar
  264. Wang, C., and Huang, S. (2014). Nuclear function of Alus. Nucleus 5, 131–137.Google Scholar
  265. Wang, H., Iacoangeli, A., Lin, D., Williams, K., Denman, R.B., Hellen, C. U.T., and Tiedge, H. (2005). Dendritic BC1 RNA in translational control mechanisms. J Cell Biol 171, 811–821.Google Scholar
  266. Wang, H., and Tiedge, H. (2004). Translational control at the synapse. Neuroscientist 10, 456–466.Google Scholar
  267. Wang, J., Gong, C., and Maquat, L.E. (2013). Control of myogenesis by rodent SINE-containing lncRNAs. Genes Dev 27, 793–804.Google Scholar
  268. Wang, J., Vicente-García, C., Seruggia, D., Moltó, E., Fernandez-Miñán, A., Neto, A., Lee, E., Gómez-Skarmeta, J.L., Montoliu, L., Lunyak, V. V., et al. (2015). MIR retrotransposon sequences provide insulators to the human genome. Proc Natl Acad Sci USA 112, e4428–E4437.Google Scholar
  269. Wang, L., and Jordan, I.K. (2018). Transposable element activity, genome regulation and human health. Curr Opin Genets Dev 49, 25–33.Google Scholar
  270. Wang, T., Zeng, J., Lowe, C.B., Sellers, R.G., Salama, S.R., Yang, M., Burgess, S.M., Brachmann, R.K., and Haussler, D. (2007). Speciesspecific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci USA 104, 18613–18618.Google Scholar
  271. Wang, W., Brunet, F.G., Nevo, E., and Long, M. (2002). Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA 99, 4448–4453.Google Scholar
  272. Wilson, B.A., and Masel, J. (2011). Putatively noncoding transcripts show extensive association with ribosomes. Genome Biol Evol 3, 1245–1252.Google Scholar
  273. Wistow, G. (1993). Lens crystallins: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18, 301–306.Google Scholar
  274. Wu, T., and Kayser, B. (2006). High altitude adaptation in Tibetans. High Altitude Med Biol 7, 193–208.Google Scholar
  275. Xiao, W., Liu, H., Li, Y., Li, X., Xu, C., Long, M., and Wang, S. (2009). A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS ONE 4, e4603.Google Scholar
  276. Xie, M., Hong, C., Zhang, B., Lowdon, R.F., Xing, X., Li, D., Zhou, X., Lee, H.J., Maire, C.L., Ligon, K.L., et al. (2013). DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45, 836–841.Google Scholar
  277. Yang, S., Arguello, J.R., Li, X., Ding, Y., Zhou, Q., Chen, Y., Zhang, Y., Zhao, R., Brunet, F., Peng, L., et al. (2008). Repetitive elementmediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 4, e3.Google Scholar
  278. Yu, H., Jiang, H., Zhou, Q., Yang, J., Cun, Y., Su, B., Xiao, C., and Wang, W. (2006). Origination and evolution of a human-specific transmembrane protein gene, c1orf37-dup. Hum Mol Genets 15, 1870–1875.Google Scholar
  279. Yu, H., Zhao, X., Su, B., Li, D., Xu, Y., Luo, S., Xiao, C., and Wang, W. (2005). Expression of NF1 pseudogenes. Hum Mutat 26, 487–488.Google Scholar
  280. Zeng, L., Pederson, S.M., Cao, D., Qu, Z., Hu, Z., Adelson, D.L., and Wei, C. (2018a). Genome-wide analysis of the association of transposable elements with gene regulation suggests that Alu elements have the largest overall regulatory impact. J Comput Biol 25, 551–562.Google Scholar
  281. Zeng, L., Pederson, S.M., Kortschak, R.D., and Adelson, D.L. (2018b). Transposable elements and gene expression during the evolution of amniotes. Mobile DNA 9, 17.Google Scholar
  282. Zhang, W., Landback, P., Gschwend, A.R., Shen, B., and Long, M. (2015). New genes drive the evolution of gene interaction networks in the human and mouse genomes. Genome Biol 16, 202.Google Scholar
  283. Zhang, Y., Lu, S., Zhao, S., Zheng, X., Long, M., and Wei, L. (2009). Positive selection for the male functionality of a co-retroposed gene in the hominoids. BMC Evol Biol 9, 252.Google Scholar
  284. Zhang, Y.E., Landback, P., Vibranovski, M., and Long, M. (2012). New genes expressed in human brains: implications for annotating evolving genomes. Bioessays 34, 982–991.Google Scholar
  285. Zhang, Y.E., Landback, P., Vibranovski, M.D., and Long, M.Y. (2011). Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 9, e1001179.Google Scholar
  286. Zhang, Y.E., and Long, M. (2014). New genes contribute to genetic and phenotypic novelties in human evolution. Curr Opin Genets Dev 29, 90–96.Google Scholar
  287. Zhang, Z., Harrison, P.M., Liu, Y., and Gerstein, M. (2003). Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13, 2541–2558.Google Scholar
  288. Zhao, D., Ferguson, A.A., and Jiang, N. (2016). What makes up plant genomes: The vanishing line between transposable elements and genes. Biochim Biophys Acta Gene Regul Mech 1859, 366–380.Google Scholar
  289. Zucchelli, S., Patrucco, L., Persichetti, F., Gustincich, S., and Cotella, D. (2016). Engineering translation in mammalian cell factories to increase protein yield: the unexpected use of long non-coding SINEUP RNAs. Comput Struct Biotech J 14, 404–410.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Experimental Pathology (ZMBE), Centre for Molecular Biology of InflammationUniversity of MünsterMünsterGermany
  2. 2.Brandenburg Medical School (MHB)NeuruppinGermany

Personalised recommendations