Science China Life Sciences

, Volume 62, Issue 1, pp 76–83 | Cite as

Glycosylation and an amino acid insertion in the head of hemagglutinin independently affect the antigenic properties of H5N1 avian influenza viruses

  • Chunyang Gu
  • Xianying Zeng
  • Yangming Song
  • Yanbing Li
  • Liling Liu
  • Yoshihiro Kawaoka
  • Dongming ZhaoEmail author
  • Hualan ChenEmail author
Research Paper


Antigenic drift forces us to frequently update influenza vaccines; however, the genetic basis for antigenic variation remains largely unknown. In this study, we used clade 7.2 H5 viruses as models to explore the molecular determinants of influenza virus antigenic variation. We generated eight monoclonal antibodies (MAbs) targeted to the hemagglutinin (HA) protein of the index virus A/chicken/Shanxi/2/2006 and found that two representative antigenically drifted clade 7.2 viruses did not react with six of the eight MAbs. The E131N mutation and insertion of leucine at position 134 in the HA protein of the antigenically drifted strains eliminated the reactivity of the virus with the MAbs. We also found that the amino acid N131 in the H5 HA protein is glycosylated. Our results provide experimental evidence that glycosylation and an amino acid insertion or deletion in HA influence antigenic variation.


Influenza virus H5N1 antigenic variation genetic basis 



This work was supported by the National Natural Science Foundation of China (31521005, 31672593), the National Key R&D Program of China (2016YFD0500201, 2016YFD0500203), the China Agriculture Research System (CARS-41-G12), and by the Japan Initiative for Global Research Network on Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan.


  1. Fouchier, R., Schneeberger, P., Rozendaal, F., Broekman, J., Kemink, S., Munster, V., Kuiken, T., Rimmelzwaan, G., Schutten, M., Van Doornum, G., et al. (2004). Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 101, 1356–1361.CrossRefGoogle Scholar
  2. Gao, Y., Zhang, Y., Shinya, K., Deng, G., Jiang, Y., Li, Z., Guan, Y., Tian, G., Li, Y., Shi, J., et al. (2009). Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. PLoS Pathog 5, e1000709.CrossRefGoogle Scholar
  3. Herfst, S., Schrauwen, E., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V., Sorrell, E., Bestebroer, T., Burke, D., Smith, D., et al. (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336, 1534–1541.CrossRefGoogle Scholar
  4. Imai, M., Watanabe, T., Hatta, M., Das, S., Ozawa, M., Shinya, K., Zhong, G., Hanson, A., Katsura, H., Watanabe, S., et al. (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420–428.CrossRefGoogle Scholar
  5. Jiang, Y., Yu, K., Zhang, H., Zhang, P., Li, C., Tian, G., Li, Y., Wang, X., Ge, J., Bu, Z., et al. (2007). Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector. Antiviral Res 75, 234–241.CrossRefGoogle Scholar
  6. Kawaoka, Y., Naeve, C., and Webster, R. (1984). Is virulence of H5N2 influenza viruses in chickens associated with loss of carbohydrate from the hemagglutinin? Virology 139, 303–316.CrossRefGoogle Scholar
  7. Kimble, J., Sorrell, E., Shao, H., Martin, P., and Perez, D. (2011). Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. Proc Natl Acad Sci USA 108, 12084–12088.CrossRefGoogle Scholar
  8. Köhler, G., and Milstein, C. (1976). Derivation of specific antibodyproducing tissue culture and tumor lines by cell fusion. Eur J Immunol 6, 511–519.CrossRefGoogle Scholar
  9. Li, C., Bu, Z., and Chen, H. (2014a). Avian influenza vaccines against H5N1 ‘bird flu’. Trends Biotech 32, 147–156.CrossRefGoogle Scholar
  10. Li, X., Shi, J., Guo, J., Deng, G., Zhang, Q., Wang, J., He, X., Wang, K., Chen, J., Li, Y., et al. (2014b). Genetics, receptor binding property, and transmissibility in mammals of naturally isolated H9N2 Avian Influenza viruses. PLoS Pathog 10, e1004508.CrossRefGoogle Scholar
  11. Li, Y., Shi, J., Zhong, G., Deng, G., Tian, G., Ge, J., Zeng, X., Song, J., Zhao, D., Liu, L., et al. (2010). Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. J Virol 84, 8389–8397.CrossRefGoogle Scholar
  12. Li, Z., Chen, H., Jiao, P., Deng, G., Tian, G., Li, Y., Hoffmann, E., Webster, R.G., Matsuoka, Y., and Yu, K. (2005). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79, 12058–12064.CrossRefGoogle Scholar
  13. Liu, L., Zeng, X., Chen, P., Deng, G., Li, Y., Shi, J., Gu, C., Kong, H., Suzuki, Y., Jiang, Y., et al. (2016). Characterization of clade 7.2 H5 avian influenza viruses that continue to circulate in chickens in China. J Virol 90, 9797–9805.CrossRefGoogle Scholar
  14. Neumann, G., and Kawaoka, Y. (2006). Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 12, 881–886.CrossRefGoogle Scholar
  15. Ping, J., Li, C., Deng, G., Jiang, Y., Tian, G., Zhang, S., Bu, Z., and Chen, H. (2008). Single-amino-acid mutation in the HA alters the recognition of H9N2 influenza virus by a monoclonal antibody. Biochem BioPhys Res Commun 371, 168–171.CrossRefGoogle Scholar
  16. Senne, D., Panigrahy, B., Kawaoka, Y., Pearson, J., Suss, J., Lipkind, M., Kida, H., and Webster, R. (1996). Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40, 425–437.CrossRefGoogle Scholar
  17. Shi, J., Deng, G., Kong, H., Gu, C., Ma, S., Yin, X., Zeng, X., Cui, P., Chen, Y., Yang, H., et al. (2017). H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res 27, 1409–1421.CrossRefGoogle Scholar
  18. Shi, J., Deng, G., Ma, S., Zeng, X., Yin, X., Li, M., Zhang, B., Cui, P., Chen, Y., Yang, H., et al. (2018). Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host Microbe 24, 558–568.e7.CrossRefGoogle Scholar
  19. Skehel, J., Stevens, D., Daniels, R., Douglas, A., Knossow, M., Wilson, I., and Wiley, D. (1984). A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody.. Proc Natl Acad Sci USA 81, 1779–1783.CrossRefGoogle Scholar
  20. Smith, D., Lapedes, A., de Jong, J., Bestebroer, T., Rimmelzwaan, G., Osterhaus, A., and Fouchier, R. (2004). Mapping the antigenic and genetic evolution of influenza virus. Science 305, 371–376.CrossRefGoogle Scholar
  21. Sorrell, E., Wan, H., Araya, Y., Song, H., and Perez, D. (2009). Minimal molecular constraints for respiratory droplet transmission of an avianhuman H9N2 influenza A virus. Proc Natl Acad Sci USA 106, 7565–7570.CrossRefGoogle Scholar
  22. Swayne, D. (2012). Impact of vaccines and vaccination on global control of avian influenza. Avian Dis 56, 818–828.CrossRefGoogle Scholar
  23. Wang, J., Zeng, Y., Xu, S., Yang, J., Wang, W., Zhong, B., Ge, J., Yin, L., Bu, Z., Shu, H., et al. (2018). A naturally occurring deletion in the effector domain of H5N1 swine influenza virus nonstructural protein 1 regulates viral fitness and host innate immunity. J Virol 92, pii: e00149-18.CrossRefGoogle Scholar
  24. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F., de Beer, T., Rempfer, C., Bordoli, L., et al. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296–W303.Google Scholar
  25. Wei, X., and Cui, J. (2018). Why were so few people infected with H7N9 influenza A viruses in China from late 2017 to 2018? Sci China Life Sci 61, 1442–1444.CrossRefGoogle Scholar
  26. WHO-OIE-FAO H5 evolution working group. (2008). Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14, e1.CrossRefGoogle Scholar
  27. World Health Organization. (2018b). Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. .Google Scholar
  28. Zeng, X., Tian, G., Shi, J., Deng, G., Li, C., and Chen, H. (2018). Vaccination of poultry successfully eliminated human infection with H7N9 virus in China. Sci China Life Sci 61, doi: .CrossRefGoogle Scholar
  29. Zhang, Q., Shi, J., Deng, G., Guo, J., Zeng, X., He, X., Kong, H., Gu, C., Li, X., Liu, J., et al. (2013a). H7N9 influenza viruses are transmissible in ferrets by respiratory droplet. Science 341, 410–414.CrossRefGoogle Scholar
  30. Zhang, Y., Zhang, Q., Kong, H., Jiang, Y., Gao, Y., Deng, G., Shi, J., Tian, G., Liu, L., Liu, J., et al. (2013b). H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340, 1459–1463.CrossRefGoogle Scholar
  31. Zhao, D., Liang, L., Wang, S., Nakao, T., Li, Y., Liu, L., Guan, Y., Fukuyama, S., Bu, Z., Kawaoka, Y., et al. (2017). Glycosylation of the hemagglutinin protein of H5N1 influenza virus increases its virulence in mice by exacerbating the host immune response. J Virol 91, pii: e02215-16.CrossRefGoogle Scholar
  32. Zhu, Q., Yang, H., Chen, W., Cao, W., Zhong, G., Jiao, P., Deng, G., Yu, K., Yang, C., Bu, Z., et al. (2008). A naturally occurring deletion in its NS gene contributes to the attenuation of an H5N1 swine influenza virus in chickens. J Virol 82, 220–228.CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunyang Gu
    • 1
  • Xianying Zeng
    • 1
  • Yangming Song
    • 1
  • Yanbing Li
    • 1
  • Liling Liu
    • 1
  • Yoshihiro Kawaoka
    • 2
  • Dongming Zhao
    • 1
    Email author
  • Hualan Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbinChina
  2. 2.Division of Virology, Department of Microbiology and Immunology, Institute of Medical ScienceUniversity of TokyoTokyoJapan

Personalised recommendations