Advertisement

Science China Life Sciences

, Volume 62, Issue 2, pp 179–186 | Cite as

The function and potential drug targets of tumour-associated Tregs for cancer immunotherapy

  • Shanshan Yan
  • Yaguang Zhang
  • Bing SunEmail author
Review

Abstract

Regulatory T cells (Tregs) play an important role in maintaining self-tolerance and immune homeostasis, but they also play a negative role in evoking effective antitumour immune responses. There is ample evidence indicating that the depletion of Tregs or the inhibition of Treg function will enhance antitumour effects. However, it is unclear which surface molecules of Tregs are suitable targets for tumour immunotherapy with minimal toxic side effects, which is a central theme in the field of Treg-targeted immunotherapy. In this review, we focus on the regulatory mechanisms of Tregs, including intrinsic and extrinsic factors within the tumour microenvironment, and we address potential drug targets on Tregs for immunotherapy.

Keywords

tumour-associated tregs regulation targets immunotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0507402).

References

  1. Ahmad, S., Abu-Eid, R., Shrimali, R., Webb, M., Verma, V., Doroodchi, A., Berrong, Z., Samara, R., Rodriguez, P.C., Mkrtichyan, M., et al. (2017). Differential PI3Kd signaling in CD4+ T-cell subsets enables selective targeting of T regulatory cells to enhance cancer immunotherapy. Cancer Res 77, 1892–1904.CrossRefGoogle Scholar
  2. Alvaro, T., Lejeune, M., Salvadó, M.T., Bosch, R., García, J.F., Jaén, J., Banham, A.H., Roncador, G., Montalbán, C., and Piris, M.A. (2005). Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11, 1467–1473.CrossRefGoogle Scholar
  3. Angelin, A., Gil-de-Gómez, L., Dahiya, S., Jiao, J., Guo, L., Levine, M.H., Wang, Z., Quinn Iii, W.J., Kopinski, P.K., Wang,… L., et al. (2017). Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metabol 25, 1282–1293.CrossRefGoogle Scholar
  4. Ansa-Addo, E.A., Zhang, Y., Yang, Y., Hußsey, G.S., Howley, B.V., Salem, M., Riesenberg, B., Sun, S., Rockey, D.C., Karvar, S., et al. (2017). Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-ß signaling. J Clin Invest 127, 1321–1337.CrossRefGoogle Scholar
  5. Bates, G.J., Fox, S.B., Han, C., Leek, R.D., Garcia, J.F., Harris, A.L., and Banham, A.H. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24, 5373–5380.CrossRefGoogle Scholar
  6. Chaudhary, B., and Elkord, E. (2016). Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines 4, 28.CrossRefGoogle Scholar
  7. Chung, W., Eum, H.H., Lee, H.O., Lee, K.M., Lee, H.B., Kim, K.T., Ryu, H.S., Kim, S., Lee, J.E., Park, Y.H., et al. (2017). Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 8, 15081.CrossRefGoogle Scholar
  8. Costa, A., Kieffer, Y., Scholer-Dahirel, A., Pelon, F., Bourachot, B., Cardon, M., Sirven, P., Magagna, I., Fuhrmann, L., Bernard, C., et al. (2018). Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33, 463–479.e10.CrossRefGoogle Scholar
  9. Cuende, J., Liénart, S., Dedobbeleer, O., van der Woning, B., De Boeck, G., Stockis, J., Huygens, C., Colau, D., Somja, J., Delvenne, P., et al. (2015). Monoclonal antibodies against GARP/TGF-ß1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci Transl Med 7, 284ra56.CrossRefGoogle Scholar
  10. Curiel, T.J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J.R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942–949.CrossRefGoogle Scholar
  11. Darmanis, S., Sloan, S.A., Croote, D., Mignardi, M., Chernikova, S., Samghababi, P., Zhang, Y., Neff, N., Kowarsky, M., Caneda, C., et al. (2017). Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21, 1399–1410.CrossRefGoogle Scholar
  12. De Simone, M., Arrigoni, A., Rossetti, G., Gruarin, P., Ranzani, V., Politano, C., Bonnal, R.J.P., Provasi, E., Sarnicola, M.L., Panzeri, I., et al. (2016). Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147.CrossRefGoogle Scholar
  13. Delgoffe, G.M., Woo, S.R., Turnis, M.E., Gravano, D.M., Guy, C., Overacre, A.E., Bettini, M.L., Vogel, P., Finkelstein, D., Bonnevier, J., et al. (2013). Stability and function of regulatory T cells is maintained by a neuropilin-1-semaphorin-4a axis. Nature 501, 252–256.CrossRefGoogle Scholar
  14. Deng, Y., Wang, F., Hughes, T., and Yu, J. (2018). FOXOs in cancer immunity: Knowns and unknowns. Semin Cancer Biol 50, 53–64.CrossRefGoogle Scholar
  15. Di, S., and Li, Z. (2016). Treatment of solid tumors with chimeric antigen receptor-engineered T cells: current status and future prospects. Sci China Life Sci 59, 360–369.CrossRefGoogle Scholar
  16. Fan, K., Yang, C., Fan, Z., Huang, Q., Zhang, Y., Cheng, H., Jin, K., Lu, Y., Wang, Z., Luo, G., et al. (2018). MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer. Cancer Lett 418, 167–175.CrossRefGoogle Scholar
  17. Feng, X., Zhang, L., Acharya, C., An, G., Wen, K., Qiu, L., Munshi, N.C., Tai, Y.T., and Anderson, K.C. (2017). Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res 23, 4290–4300.CrossRefGoogle Scholar
  18. Frey, D.M., Droeser, R.A., Viehl, C.T., Zlobec, I., Lugli, A., Zingg, U., Oertli, D., Kettelhack, C., Terracciano, L., and Tornillo, L. (2010). High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer 353, NA.Google Scholar
  19. Grinberg-Bleyer, Y., Oh, H., Desrichard, A., Bhatt, D.M., Caron, R., Chan, T.A., Schmid, R.M., Klein, U., Hayden, M.S., and Ghosh, S. (2017). NF-B c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell 170, 1096–1108.e13.CrossRefGoogle Scholar
  20. Guo, X., Zhang, Y., Zheng, L., Zheng, C., Song, J., Zhang, Q., Kang, B., Liu, Z., Jin, L., Xing, R., et al. (2018). Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat Med 24, 978–985.CrossRefGoogle Scholar
  21. Hiraoka, N., Onozato, K., Kosuge, T., and Hirohashi, S. (2006). Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12, 5423–5434.CrossRefGoogle Scholar
  22. Ichihara, F., Kono, K., Takahashi, A., Kawaida, H., Sugai, H., and Fujii, H. (2003). Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin Cancer Res 9, 4404–4408.Google Scholar
  23. Jiang, R., Tang, J., Chen, Y., Deng, L., Ji, J., Xie, Y., Wang, K., Jia, W., Chu, W.M., and Sun, B. (2017). The long noncoding RNA lnc-EGFR stimulates T-regulatory cells differentiation thus promoting hepatocellular carcinoma immune evasion. Nat Commun 8, 15129.CrossRefGoogle Scholar
  24. Jones, A., Bourque, J., Kuehm, L., Opejin, A., Teague, R.M., Gross, C., and Hawiger, D. (2016). Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity 45, 1066–1077.CrossRefGoogle Scholar
  25. Joyce, J.A., and Fearon, D.T. (2015). T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80.CrossRefGoogle Scholar
  26. Kong, K.F., Fu, G., Zhang, Y., Yokosuka, T., Casas, J., Canonigo-Balancio, A.J., Becart, S., Kim, G., Yates, J.R., Kronenberg, M., et al. (2014). Protein kinase C-controls CTLA-4–mediated regulatory T cell function. Nat Immunol 15, 465–472.CrossRefGoogle Scholar
  27. Li, H., Courtois, E.T., Sengupta, D., Tan, Y., Chen, K.H., Goh, J.J.L., Kong, S.L., Chua, C., Hon, L.K., Tan, W.S., et al. (2017). Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 49, 708–718.CrossRefGoogle Scholar
  28. Liyanage, U.K., Moore, T.T., Joo, H.G., Tanaka, Y., Herrmann, V., Doherty, G., Drebin, J.A., Strasberg, S.M., Eberlein, T.J., Goedegebuure, P.S., et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169, 2756–2761.CrossRefGoogle Scholar
  29. Luo, C.T., Liao, W., Dadi, S., Toure, A., and Li, M.O. (2016). Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature 529, 532–536.CrossRefGoogle Scholar
  30. Maj, T., Wang, W., Crespo, J., Zhang, H., Wang, W., Wei, S., Zhao, L., Vatan, L., Shao, I., Szeliga, W., et al. (2017). Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol 18, 1332–1341.CrossRefGoogle Scholar
  31. Martin-Liberal, J., Ochoa de Olza, M., Hierro, C., Gros, A., Rodon, J., and Tabernero, J. (2017). The expanding role of immunotherapy. Cancer Treatment Rev 54, 74–86.CrossRefGoogle Scholar
  32. Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A.S., Mustapha, R., Niki, T., Guigay, J., Pancré, V., de Launoit, Y., Busson, P., et al. (2015). Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Institut 107, 363.Google Scholar
  33. Ni, X., Tao, J., Barbi, J., Chen, Q., Park, B.V., Li, Z., Zhang, N., Lebid, A., Ramaswamy, A., Wei, P., et al. (2018). YAP is essential for Tregmediated suppression of antitumor immunity. Cancer Discov 8, 1026–1043.CrossRefGoogle Scholar
  34. Nie, Y., He, J., Shirota, H., Trivett, A.L., Yang, D., Klinman, D.M., Oppenheim, J.J., and Chen, X. (2018). Blockade of TNFR2 signaling enhances the immunotherapeutic effect of CpG ODN in a mouse model of colon cancer. Sci Signal 11, eaan0790.Google Scholar
  35. Nishikawa, H., and Sakaguchi, S. (2010). Regulatory T cells in tumor immunity. Int J Cancer 16, 759–767.Google Scholar
  36. Oh, H., Grinberg-Bleyer, Y., Liao, W., Maloney, D., Wang, P., Wu, Z., Wang, J., Bhatt, D.M., Heise, N., Schmid, R.M., et al. (2017). An NF-B transcription-factor-dependent lineage-specific transcriptional program promotes regulatory T cell identity and function. Immunity 47, 450–465.CrossRefGoogle Scholar
  37. Ormandy, L.A., Hillemann, T., Wedemeyer, H., Manns, M.P., Greten, T.F., and Korangy, F. (2005). Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65, 2457–2464.CrossRefGoogle Scholar
  38. Overacre-Delgoffe, A.E., Chikina, M., Dadey, R.E., Yano, H., Brunazzi, E. A., Shayan, G., Horne, W., Moskovitz, J.M., Kolls, J.K., Sander, C., et al. (2017). Interferon- drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141.e11.CrossRefGoogle Scholar
  39. Pacella, I., Procaccini, C., Focaccetti, C., Miacci, S., Timperi, E., Faicchia, D., Severa, M., Rizzo, F., Coccia, E.M., Bonacina, F., et al. (2018). Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc Natl Acad Sci USA 115, e6546–E6555.CrossRefGoogle Scholar
  40. Pitt, J.M., Vétizou, M., Daillère, R., Roberti, M.P., Yamazaki, T., Routy, B., Lepage, P., Boneca, I.G., Chamaillard, M., Kroemer, G., et al. (2016). Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and-extrinsic factors. Immunity 44, 1255–1269.CrossRefGoogle Scholar
  41. Plitas, G., Konopacki, C., Wu, K., Bos, P.D., Morrow, M., Putintseva, E.V., Chudakov, D.M., and Rudensky, A.Y. (2016). Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134.CrossRefGoogle Scholar
  42. Priceman, S.J., Shen, S., Wang, L., Deng, J., Yue, C., Kujawski, M., and Yu, H. (2014). S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. Cell Rep 6, 992–999.CrossRefGoogle Scholar
  43. Roychoudhuri, R., Eil, R.L., Clever, D., Klebanoff, C.A., Sukumar, M., Grant, F.M., Yu, Z., Mehta, G., Liu, H., Jin, P., et al. (2016). The transcription factor BACH2 promotes tumor immunosuppression. J Clin Invest 126, 599–604.CrossRefGoogle Scholar
  44. Saito, T., Nishikawa, H., Wada, H., Nagano, Y., Sugiyama, D., Atarashi, K., Maeda, Y., Hamaguchi, M., Ohkura, N., Sato, E., et al. (2016). Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22, 679–684.CrossRefGoogle Scholar
  45. Salama, P., Phillips, M., Grieu, F., Morris, M., Zeps, N., Joseph, D., Platell, C., and Iacopetta, B. (2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27, 186–192.CrossRefGoogle Scholar
  46. Sasada, T., Kimura, M., Yoshida, Y., Kanai, M., and Takabayashi, A. (2003). CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies. Cancer 98, 1089–1099.CrossRefGoogle Scholar
  47. Sato, E., Olson, S.H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., Jungbluth, A.A., Frosina, D., Gnjatic, S., Ambrosone, C., et al. (2005). Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102, 18538–18543.CrossRefGoogle Scholar
  48. Savas, P., Virassamy, B., Ye, C., Salim, A., Mintoff, C.P., Caramia, F., Salgado, R., Byrne, D.J., Teo, Z.L., Dushyanthen, S., et al. (2018). Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med 24, 986–993.CrossRefGoogle Scholar
  49. Schaefer, C., Kim, G.G., Albers, A., Hoermann, K., Myers, E.N., and Whiteside, T.L. (2005). Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br J Cancer 92, 913–920.CrossRefGoogle Scholar
  50. Schelker, M., Feau, S., Du, J., Ranu, N., Klipp, E., MacBeath, G., Schoeberl, B., and Raue, A. (2017). Estimation of immune cell content in tumour tissue using single-cell RNA-seq data. Nat Commun 8, 2032.CrossRefGoogle Scholar
  51. Shabaneh, T.B., Molodtsov, A.K., Steinberg, S.M., Zhang, P., Torres, G.M., Mohamed, G.A., Boni, A., Curiel, T.J., Angeles, C.V., and Turk, M.J. (2018). Oncogenic BRAFV600E governs regulatory T-cell recruitment during melanoma tumorigenesis. Cancer Res 78, 5038–5049.CrossRefGoogle Scholar
  52. Shang, B., Liu, Y., Jiang, S.J., and Liu, Y. (2015). Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep 5, 15179.CrossRefGoogle Scholar
  53. Sinicrope, F.A., Rego, R.L., Ansell, S.M., Knutson, K.L., Foster, N.R., and Sargent, D.J. (2009). Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137, 1270–1279.CrossRefGoogle Scholar
  54. Tanaka, A., and Sakaguchi, S. (2017). Regulatory T cells in cancer immunotherapy. Cell Res 27, 109–118.CrossRefGoogle Scholar
  55. Teng, M.W.L., Ngiow, S.F., von Scheidt, B., McLaughlin, N., Sparwasser, T., and Smyth, M.J. (2010). Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 70, 7800–7809.CrossRefGoogle Scholar
  56. Turnis, M.E., Sawant, D.V., Szymczak-Workman, A.L., Andrews, L.P., Delgoffe, G.M., Yano, H., Beres, A.J., Vogel, P., Workman, C.J., and Vignali, D.A.A. (2016). Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329.CrossRefGoogle Scholar
  57. Vences-Catalán, F., Rajapaksa, R., Srivastava, M.K., Marabelle, A., Kuo, C.C., Levy, R., and Levy, S. (2015). Tetraspanin CD81 promotes tumor growth and metastasis by modulating the functions of T regulatory and myeloid-derived suppressor cells. Cancer Res 75, 4517–4526.CrossRefGoogle Scholar
  58. Villarreal, D.O., L'Huillier, A., Armington, S., Mottershead, C., Filippova, E.V., Coder, B.D., Petit, R.G., and Princiotta, M.F. (2018). Targeting CCR8 induces protective antitumor immunity and enhances vaccineinduced responses in colon cancer. Cancer Res 78, 5340–5348.CrossRefGoogle Scholar
  59. Wang, D., Quiros, J., Mahuron, K., Pai, C.C., Ranzani, V., Young, A., Silveria, S., Harwin, T., Abnousian, A., Pagani, M., et al. (2018). Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell Rep 23, 3262–3274.CrossRefGoogle Scholar
  60. Wei, J., Long, L., Yang, K., Guy, C., Shrestha, S., Chen, Z., Wu, C., Vogel, P., Neale, G., Green, D.R., et al. (2016). Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17, 277–285.CrossRefGoogle Scholar
  61. Wilke, C.M., Wu, K., Zhao, E., Wang, G., and Zou, W. (2010). Prognostic significance of regulatory T cells in tumor. Int J Cancer 88, 748–758.Google Scholar
  62. Wolf, A.M., Wolf, D., Steurer, M., Gastl, G., Gunsilius, E., and Grubeck-Loebenstein, B. (2003). Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9, 606–612.Google Scholar
  63. Wu, Y., Yuan, L., Lu, Q., Xu, H., and He, X. (2018). Distinctive profiles of tumor-infiltrating immune cells and association with intensity of infiltration in colorectal cancer. Oncol Lett 15, 3876–3882.Google Scholar
  64. Yang, R., and Hung, M.C. (2017). The role of T-cell immunoglobulin mucin-3 and its ligand galectin-9 in antitumor immunity and cancer immunotherapy. Sci China Life Sci 60, 1058–1064.CrossRefGoogle Scholar
  65. Yin, Y., Cai, X., Chen, X., Liang, H., Zhang, Y., Li, J., Wang, Z., Chen, X., Zhang, W., Yokoyama, S., et al. (2014). Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 24, 1164–1180.CrossRefGoogle Scholar
  66. Zaynagetdinov, R., Sherrill, T.P., Gleaves, L.A., McLoed, A.G., Saxon, J. A., Habermann, A.C., Connelly, L., Dulek, D., Peebles, R.S., Fingleton, B., et al. (2015). Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res 75, 1624–1634.CrossRefGoogle Scholar
  67. Zdanov, S., Mandapathil, M., Abu Eid, R., Adamson-Fadeyi, S., Wilson, W., Qian, J., Carnie, A., Tarasova, N., Mkrtichyan, M., Berzofsky, J.A., et al. (2016). Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol Res 4, 354–365.CrossRefGoogle Scholar
  68. Zheng, C., Zheng, L., Yoo, J.K., Guo, H., Zhang, Y., Guo, X., Kang, B., Hu, R., Huang, J.Y., Zhang, Q., et al. (2017). Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16.CrossRefGoogle Scholar
  69. Zhou, S.L., Zhou, Z.J., Hu, Z.Q., Huang, X.W., Wang, Z., Chen, E.B., Fan, J., Cao, Y., Dai, Z., and Zhou, J. (2016). Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology 150, 1646–1658.e17.CrossRefGoogle Scholar
  70. Zou, W., Wolchok, J.D., and Chen, L. (2016). PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8, 328rv4.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
  2. 2.School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations