Advertisement

Science China Life Sciences

, Volume 62, Issue 3, pp 360–368 | Cite as

Advances in research into gamete and embryo-fetal origins of adult diseases

  • Kexin Zou
  • Guolian Ding
  • Hefeng HuangEmail author
Review From CAS & CAE Members

Abstract

The fetal and infant origins of adult disease hypothesis proposed that the roots of adult chronic disease lie in the effects of adverse environments in fetal life and early infancy. In addition to the fetal period, fertilization and early embryonic stages, the critical time windows of epigenetic reprogramming, rapid cell differentiation and organogenesis, are the most sensitive stages to environmental disturbances. Compared with embryo and fetal development, gametogenesis and maturation take decades and are more vulnerable to potential damage for a longer exposure period. Therefore, we should shift the focus of adult disease occurrence and pathogenesis further back to gametogenesis and embryonic development events, which may result in intergenerational, even transgenerational, epigenetic re-programming with transmission of adverse traits and characteristics to offspring. Here, we focus on the research progress relating to diseases that originated from events in the gametes and early embryos and the potential epigenetic mechanisms involved.

Keywords

gamete embryo acquired inheritance intergenerational/transgenerational transmission epigenetic modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Special Fund for the National Key Research and Development Plan (2017YFC1001303) and National Natural Science Foundation of China (81490742 and 31571556).

References

  1. Bahous, R.H., Jadavji, N.M., Deng, L., Cosín-Tomás, M., Lu, J., Malysheva, O., Leung, K.Y., Ho, M.K., Pallàs, M., Kaliman, P., et al. (2017). High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring. Hum Mol Genet 26, 888–900.PubMedPubMedCentralGoogle Scholar
  2. Barker, D.J., Osmond, C., and Law, C.M. (1989a). The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Commun Health 43, 237–240.CrossRefGoogle Scholar
  3. Barker, D.J.P., Osmond, C., Winter, P.D., Margetts, B., and Simmonds, S.J. (1989b). Weight in infancy and death from ischaemic heart disease. Lancet 334, 577–580.CrossRefGoogle Scholar
  4. Barker, D. J., ed. (1992). Fetal and Infant Origins of Adult Disease. London: BMJ Books.Google Scholar
  5. Canani, R.B., Di Costanzo, M., Leone, L., Bedogni, G., Brambilla, P., Cianfarani, S., Nobili, V., Pietrobelli, A., and Agostoni, C. (2011). Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 24, 198–205.CrossRefPubMedGoogle Scholar
  6. Cardozo, E.R., Karmon, A.E., Gold, J., Petrozza, J.C., and Styer, A.K. (2015). Reproductive outcomes in oocyte donation cycles are associated with donor BMI. Hum Reprod 207, dev298.CrossRefGoogle Scholar
  7. Chen, H., Zhang, L., Deng, T., Zou, P., Wang, Y., Quan, F., and Zhang, Y. (2016). Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 86, 868–878.CrossRefPubMedGoogle Scholar
  8. Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., et al. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400.CrossRefPubMedGoogle Scholar
  9. Ding, G.L., Wang, F.F., Shu, J., Tian, S., Jiang, Y., Zhang, D., Wang, N., Luo, Q., Zhang, Y., Jin, F., et al. (2012). Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61, 1133–1142.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235.CrossRefPubMedGoogle Scholar
  11. Eckersley-Maslin, M.A., Alda-Catalinas, C., and Reik, W. (2018). Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 19, 436–450.CrossRefPubMedGoogle Scholar
  12. Eckert, J.J., Porter, R., Watkins, A.J., Burt, E., Brooks, S., Leese, H.J., Humpherson, P.G., Cameron, I.T., and Fleming, T.P. (2012). Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health. PLoS ONE 7, e52791.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fleming, T. P., Eckert, J. J. and Denisenko, O. (2017). The role of maternal nutrition during the periconceptional period and its effect on offspring phenotype. Adv Exp Med Biol 1014: 87–105.CrossRefPubMedGoogle Scholar
  14. Fleming, T.P., Velazquez, M.A., Eckert, J.J., Lucas, E.S., and Watkins, A.J. (2012). Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring. Anim Reprod Sci 130, 193–197.CrossRefPubMedGoogle Scholar
  15. Flyamer, I.M., Gassler, J., Imakaev, M., Brandão, H.B., Ulianov, S.V., Abdennur, N., Razin, S.V., Mirny, L.A., and Tachibana-Konwalski, K. (2017). Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gao, L., Zhao, Y.C., Liang, Y., Lin, X.H., Tan, Y.J., Wu, D.D., Li, X.Z., Ye, B.Z., Kong, F.Q., Sheng, J.Z., et al. (2016). The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment. J Pineal Res 61, 340–352.CrossRefGoogle Scholar
  17. Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I.M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17, 667–669.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ge, Z.J., Liang, X.W., Guo, L., Liang, Q.X., Luo, S.M., Wang, Y.P., Wei, Y. C., Han, Z.M., Schatten, H., and Sun, Q.Y. (2013). Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes. Biol Reprod 88, 117.CrossRefPubMedGoogle Scholar
  19. Gkountela, S., Zhang, K.X., Shafiq, T.A., Liao, W.W., Hargan-Calvopiña, J., Chen, P.Y., and Clark, A.T. (2015). DNA demethylation dynamics in the human prenatal germline. Cell 161, 1425–1436.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gluckman, P., and Harding, J. (1994). Nutritional and hormonal regulation of fetal growth—evolving concepts. Acta Paediatr 83, 60–63.CrossRefGoogle Scholar
  21. Gould, J.M., Smith, P.J., Airey, C.J., Mort, E.J., Airey, L.E., Warricker, F.D. M., Pearson-Farr, J.E., Weston, E.C., Gould, P.J.W., Semmence, O.G., et al. (2018). Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory. Proc Natl Acad Sci USA 115, E7398–E7407.CrossRefPubMedGoogle Scholar
  22. Grandjean, V., Fourré, S., De Abreu, D.A.F., Derieppe, M.A., Remy, J.J., and Rassoulzadegan, M. (2015). RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 5, 18193.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gu, T.P., Guo, F., Yang, H., Wu, H.P., Xu, G.F., Liu, W., Xie, Z.G., Shi, L., He, X., Jin, S., et al. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610.CrossRefPubMedGoogle Scholar
  24. Guo, F., Yan, L., Guo, H., Li, L., Hu, B., Zhao, Y., Yong, J., Hu, Y., Wang, X., Wei, Y., et al. (2015). The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161, 1437–1452.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Han, L., Ren, C., Li, L., Li, X., Ge, J., Wang, H., Miao, Y.L., Guo, X., Moley, K.H., Shu, W., et al. (2018). Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 50, 432–442.CrossRefPubMedGoogle Scholar
  26. Hanna, C.W., Demond, H., and Kelsey, G. (2018). Epigenetic regulation in development: is the mouse a good model for the human? Human Reprod Update 24, 556–576.CrossRefGoogle Scholar
  27. Hanson, M.A., and Gluckman, P.D. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 94, 1027–1076.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hou, Y.J., Zhu, C.C., Duan, X., Liu, H.L., Wang, Q., and Sun, S.C. (2016). Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep 6, 18858.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hu, X.L., Feng, C., Lin, X.H., Zhong, Z.X., Zhu, Y.M., Lv, P.P., Lv, M., Meng, Y., Zhang, D., Lu, X.E., et al. (2014). High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth. J Clin Endocrinol Metab 99, 2217–2224.CrossRefPubMedGoogle Scholar
  30. Huypens, P., Sass, S., Wu, M., Dyckhoff, D., Tschöp, M., Theis, F., Marschall, S., Hrabe de Angelis, M., and Beckers, J. (2016). Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet 48, 497–499.CrossRefPubMedGoogle Scholar
  31. Joubert, B.R., den Dekker, H.T., Felix, J.F., Bohlin, J., Ligthart, S., Beckett, E., Tiemeier, H., van Meurs, J.B., Uitterlinden, A.G., Hofman, A., et al. (2016). Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7, 10577.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jungheim, E.S., Schoeller, E.L., Marquard, K.L., Louden, E.D., Schaffer, J. E., and Moley, K.H. (2010). Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151, 4039–4046.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kanaka-gantenbein, C., Mastorakos, G., and Chrousos, G.P. (2003). Endocrine-related causes and consequences of intrauterine growth retardation. Ann New York Acad Sci 997, 150–157.CrossRefGoogle Scholar
  34. Ke, Y., Xu, Y., Chen, X., Feng, S., Liu, Z., Sun, Y., Yao, X., Li, F., Zhu, W., Gao, L., et al. (2017). 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381.e20.CrossRefPubMedGoogle Scholar
  35. Krishnaveni, G.V., Veena, S.R., Karat, S.C., Yajnik, C.S., and Fall, C.H.D. (2014). Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children. Diabetologia 57, 110–121.CrossRefPubMedGoogle Scholar
  36. Kuhtz, J., Romero, S., De Vos, M., Smitz, J., Haaf, T., and Anckaert, E. (2014). Human in vitro oocyte maturation is not associated with increased imprinting error rates at LIT1, SNRPN, PEG3 and GTL2. Hum Reprod 29, 1995–2005.CrossRefPubMedGoogle Scholar
  37. Li, W., Li, Z., Li, S., Wang, X., Wilson, J.X., and Huang, G. (2018). Periconceptional folic acid supplementation benefit to development of early sensory-motor function through increase DNA methylation in rat offspring. Nutrients 10, 292.CrossRefPubMedCentralGoogle Scholar
  38. Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., et al. (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562.CrossRefPubMedGoogle Scholar
  39. Lv, P.P., Meng, Y., Lv, M., Feng, C., Liu, Y., Li, J.Y., Yu, D.Q., Shen, Y., Hu, X.L., Gao, Q., et al. (2014). Altered thyroid hormone profile in offspring after exposure to high estradiol environment during the first trimester of pregnancy: a cross-sectional study. BMC Med 12, 240.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lv, P.P., Tian, S., Feng, C., Li, J.Y., Yu, D.Q., Jin, L., Shen, Y., Yu, T.T., Meng, Y., Ding, G.L., et al. (2016). Maternal high estradiol exposure is associated with elevated thyroxine and Pax8 in mouse offspring. Sci Rep 6, 36805.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marshall, K.L., and Rivera, R.M. (2018). The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev 85, 90–105.CrossRefPubMedGoogle Scholar
  42. Meng, Y., Lv, P.P., Ding, G.L., Yu, T.T., Liu, Y., Shen, Y., Hu, X.L., Lin, X. H., Tian, S., Lv, M., et al. (2015). High maternal serum estradiol levels induce dyslipidemia in human newborns via a hepatic HMGCR estrogen response element. Sci Rep 5, 10086.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Morgan, H.D., Sutherland, H.G.E., Martin, D.I.K., and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23, 314–318.CrossRefPubMedGoogle Scholar
  44. Motrenko, T. (2010). Embryo-fetal origin of diseases–new approach on epigenetic reprogramming. Arch Perinat Med 6.Google Scholar
  45. Padmanabhan, N., Jia, D., Geary-Joo, C., Wu, X., Ferguson-Smith, A.C., Fung, E., Bieda, M.C., Snyder, F.F., Gravel, R.A., Cross, J.C., et al. (2013). Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155, 81–93.CrossRefPubMedGoogle Scholar
  46. Paneth, N., and Susser, M. (1995). Early origin of coronary heart disease (the “Barker hypothesis”). Br Med J 310, 411–412.CrossRefGoogle Scholar
  47. Pliushch, G., Schneider, E., Schneider, T., El Hajj, N., Rösner, S., Strowitzki, T., and Haaf, T. (2015). In vitro maturation of oocytes is not associated with altered deoxyribonucleic acid methylation patterns in children from in vitro fertilization or intracytoplasmic sperm injection. Fertil Steril 103, 720–727.e1.CrossRefPubMedGoogle Scholar
  48. Radford, E.J., Ito, M., Shi, H., Corish, J.A., Yamazawa, K., Isganaitis, E., Seisenberger, S., Hore, T.A., Reik, W., Erkek, S., et al. (2014). In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 1255903.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rechavi, O., Houri-Ze’evi, L., Anava, S., Goh, W.S.S., Kerk, S.Y., Hannon, G.J., and Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158, 277–287.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ren, J., Cheng, Y., Ming, Z.H., Dong, X.Y., Zhou, Y.Z., Ding, G.L., Pang, H.Y., Rahman, T.U., Akbar, R., Huang, H.F., et al. (2018). Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs. Epigenets Chromatin 11, 20.CrossRefGoogle Scholar
  51. Rodgers, A.B., Morgan, C.P., Leu, N.A., and Bale, T.L. (2015). Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 112, 13699–13704.CrossRefPubMedGoogle Scholar
  52. Siklenka, K., Erkek, S., Godmann, M., Lambrot, R., McGraw, S., Lafleur, C., Cohen, T., Xia, J., Suderman, M., Hallett, M., et al. (2015). Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350, aab2006.CrossRefPubMedGoogle Scholar
  53. Skinner, M.K., Guerrero-Bosagna, C., and Haque, M.M. (2015). Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. Epigenetics 10, 762–771.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Soubry, A. (2018). POHaD: why we should study future fathers. Environ Epigenets 4, dvy007.Google Scholar
  55. Stein, A.D., Pierik, F.H., Verrips, G.H.W., Susser, E.S., and Lumey, L.H. (2009). Maternal exposure to the Dutch famine before conception and during pregnancy. Epidemiology 20, 909–915.CrossRefPubMedGoogle Scholar
  56. Tan, Y.J., Zhang, X.Y., Ding, G.L., Li, R., Wang, L., Jin, L., Lin, X.H., Gao, L., Sheng, J.Z., and Huang, H.F. (2015). Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation. Sci Rep 5, 17741.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tian, S., Lin, X.H., Xiong, Y.M., Liu, M.E., Yu, T.T., Lv, M., Zhao, W., Xu, G.F., Ding, G.L., Xu, C.M., et al. (2017). Prevalence of prediabetes risk in offspring born to mothers with hyperandrogenism. EBioMedicine 16, 275–283.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tobi, E.W., Slieker, R.C., Stein, A.D., Suchiman, H.E.D., Slagboom, P.E., van Zwet, E.W., Heijmans, B.T., and Lumey, L.H. (2015). Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol 44, 1211–1223.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Veenendaal, M.V.E., Painter, R.C., de Rooij, S.R., Bossuyt, P.M.M., van der Post, J.A.M., Gluckman, P.D., Hanson, M.A., and Roseboom, T.J. (2013). Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120, 548–554.CrossRefPubMedGoogle Scholar
  60. Vickers, M.H. (2014). Early life nutrition, epigenetics and programming of later life disease. Nutrients 6, 2165–2178.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang, C., Liu, X., Gao, Y., Yang, L., Li, C., Liu, W., Chen, C., Kou, X., Zhao, Y., Chen, J., et al. (2018). Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat Cell Biol 20, 620–631.CrossRefPubMedGoogle Scholar
  62. Wang, H.H., Zhou, C.L., Lv, M., Yang, Q., Li, J.X., Hou, M., Lin, J., Liu, X.M., Wu, Y.T., Sheng, J.Z., et al. (2018). Prenatal high estradiol exposure induces sex-specific and dietarily reversible insulin resistance through decreased hypothalamic INSR. Endocrinology 159, 465–476.CrossRefPubMedGoogle Scholar
  63. Wang, Q., Tang, S.B., Song, X.B., Deng, T.F., Zhang, T.T., Yin, S., Luo, S. M., Shen, W., Zhang, C.L., and Ge, Z.J. (2018). High-glucose concentrations change DNA methylation levels in human IVM oocytes. Human Reprod 33, 474–481.CrossRefGoogle Scholar
  64. Watkins, A.J., Lucas, E.S., Torrens, C., Cleal, J.K., Green, L., Osmond, C., Eckert, J.J., Gray, W.P., Hanson, M.A., and Fleming, T.P. (2010). Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin-angiotensin-system homeostasis in the offspring. Br J Nutr 103, 1762–1770.CrossRefPubMedGoogle Scholar
  65. Watkins, A.J., Ursell, E., Panton, R., Papenbrock, T., Hollis, L., Cunningham, C., Wilkins, A., Perry, V.H., Sheth, B., Kwong, W.Y., et al. (2008a). Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease1. Biol Reprod 78, 299–306.CrossRefPubMedGoogle Scholar
  66. Watkins, A.J., Wilkins, A., Cunningham, C., Perry, V.H., Seet, M.J., Osmond, C., Eckert, J.J., Torrens, C., Cagampang, F.R.A., Cleal, J., et al. (2008b). Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring. J Physiol 586, 2231–2244.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wei, Y., Yang, C.R., Wei, Y.P., Zhao, Z.A., Hou, Y., Schatten, H., and Sun, Q.Y. (2014). Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA 111, 1873–1878.CrossRefPubMedGoogle Scholar
  68. Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534, 652–657.CrossRefPubMedGoogle Scholar
  69. Wu, L.L., Russell, D.L., Wong, S.L., Chen, M., Tsai, T.S., St John, J.C., Norman, R.J., Febbraio, M.A., Carroll, J., and Robker, R.L. (2015). Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142, 681–691.CrossRefPubMedGoogle Scholar
  70. Xu, G.F., Zhang, J.Y., Pan, H.T., Tian, S., Liu, M.E., Yu, T.T., Li, J.Y., Ying, W.W., Yao, W.M., Lin, X.H., et al. (2014). Cardiovascular dysfunction in offspring of ovarian-hyperstimulated women and effects of estradiol and progesterone: a retrospective cohort study and proteomics analysis. J Clin Endocrinol Metab 99, E2494–E2503.CrossRefPubMedGoogle Scholar
  71. Xu, G.F., Zhou, C.L., Xiong, Y.M., Li, J.Y., Yu, T.T., Tian, S., Lin, X.H., Liao, Y., Lv, Y., Zhang, F.H., et al. (2017). Reduced intellectual ability in offspring of ovarian hyperstimulation syndrome: a cohort study. EBioMedicine 20, 263–267.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zamudio, N.M., Chong, S., and O’Bryan, M.K. (2008). Epigenetic regulation in male germ cells. Reproduction 136, 131–146.CrossRefPubMedGoogle Scholar
  73. Zeltser, L.M. (2018). Feeding circuit development and early-life influences on future feeding behaviour. Nat Rev Neurosci 19, 302–316.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zenk, F., Loeser, E., Schiavo, R., Kilpert, F., Bogdanovic, O., and Iovino, N. (2017). Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition. Science 357, 212–216.CrossRefPubMedGoogle Scholar
  75. Zhang, L., Han, L., Ma, R., Hou, X., Yu, Y., Sun, S., Xu, Y., Schedl, T., Moley, K.H., and Wang, Q. (2015). Sirt3 prevents maternal obesityassociated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle 14, 2959–2968.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zhang, Y., Zhang, X., Shi, J., Tuorto, F., Li, X., Liu, Y., Liebers, R., Zhang, L., Qu, Y., Qian, J., et al. (2018). Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 20, 535–540.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhu, P., Guo, H., Ren, Y., Hou, Y., Dong, J., Li, R., Lian, Y., Fan, X., Hu, B., Gao, Y., et al. (2018). Single-cell DNA methylome sequencing of human preimplantation embryos. Nat Genet 50, 12–19.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute of Embryo-Fetal Original Adult Disease, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations