Conservation metagenomics: a new branch of conservation biology

  • Fuwen WeiEmail author
  • Qi Wu
  • Yibo Hu
  • Guangping Huang
  • Yonggang Nie
  • Li Yan
Open Access


Multifaceted approaches are required to monitor wildlife populations and improve conservation efforts. In the last decade, increasing evidence suggests that metagenomic analysis offers valuable perspectives and tools for identifying microbial communities and functions. It has become clear that gut microbiome plays a critical role in health, nutrition, and physiology of wildlife, including numerous endangered animals in the wild and in captivity. In this review, we first introduce the human microbiome and metagenomics, highlighting the importance of microbiome for host fitness. Then, for the first time, we propose the concept of conservation metagenomics, an emerging subdiscipline of conservation biology, which aims to understand the roles of the microbiota in evolution and conservation of endangered animals. We define what conservation metagenomics is along with current approaches, main scientific issues and significant implications in the study of host evolution, physiology, nutrition, ecology and conservation. We also discuss future research directions of conservation metagenomics. Although there is still a long way to go, conservation metagenomics has already shown a significant potential for improving the conservation and management of wildlife.


microbiome conservation biology conservation metagenomics endangered animal 



This work was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000), the National Key Program of Research and Development, Ministry of Science and Technology of China (2016YFC0503200), and the Creative Research Group Project of National Natural Science Foundation of China (31821001).


  1. Alfano, N., Courtiol, A., Vielgrader, H., Timms, P., Roca, A.L., and Greenwood, A.D. (2015). Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Sci Rep 5, 10189.CrossRefGoogle Scholar
  2. Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Rex Gaskins, H., Stumpf, R.M., Yildirim, S., Torralba, M., et al. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J 7, 1344–1353.CrossRefGoogle Scholar
  3. Amato, K.R. (2013). Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Sci Med 1, 10–29.CrossRefGoogle Scholar
  4. Amato, K.R., Leigh, S.R., Kent, A., Mackie, R.I., Yeoman, C.J., Stumpf, R. M., Wilson, B.A., Nelson, K.E., White, B.A., and Garber, P.A. (2014). The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol 69, 434–443.CrossRefGoogle Scholar
  5. Amato, K.R., G. Sanders, J., Song, S.J., Nute, M., Metcalf, J.L., Thompson, L.R., Morton, J.T., Amir, A., J. McKenzie, V., Humphrey, G., et al. (2018). Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 23, doi: 10.1038/s41396-018-0175-0.Google Scholar
  6. Barker, C.J., Gillett, A., Polkinghorne, A., and Timms, P. (2013). Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Vet Microbiol 167, 554–564.CrossRefGoogle Scholar
  7. Bik, E.M., Costello, E.K., Switzer, A.D., Callahan, B.J., Holmes, S.P., Wells, R.S., Carlin, K.P., Jensen, E.D., Venn-Watson, S., and Relman, D.A. (2016). Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat Commun 7, 10516.CrossRefGoogle Scholar
  8. Booijink, C.C.G.M., Boekhorst, J., Zoetendal, E.G., Smidt, H., Kleerebezem, M., and de Vos, W.M. (2010). Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol 76, 5533–5540.CrossRefGoogle Scholar
  9. Bouchie, A. (2016). White house unveils national microbiome initiative. Nat Biotechnol 34, 580.CrossRefGoogle Scholar
  10. Butchart, S.H.M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P.W., Almond, R.E.A., Baillie, J.E.M., Bomhard, B., Brown, C., Bruno, J., et al. (2010). Global biodiversity: indicators of recent declines. Science 328, 1164–1168.CrossRefGoogle Scholar
  11. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336.CrossRefGoogle Scholar
  12. Cheng, Y., Fox, S., Pemberton, D., Hogg, C., Papenfuss, A.T., and Belov, K. (2015). The Tasmanian devil microbiome—implications for conservation and management. Microbiome 3, 76.CrossRefGoogle Scholar
  13. Chu, H., Khosravi, A., Kusumawardhani, I.P., Kwon, A.H.K., Vasconcelos, A.C., Cunha, L.D., Mayer, A.E., Shen, Y., Wu, W.L., Kambal, A., et al. (2016). Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science 352, 1116–1120.CrossRefGoogle Scholar
  14. Cleaveland, S., Laurenson, M.K., and Taylor, L.H. (2001). Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. Philos Trans R Soc B-Biol Sci 356, 991–999.CrossRefGoogle Scholar
  15. Costello, E.K., Gordon, J.I., Secor, S.M., and Knight, R. (2010). Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J 4, 1375–1385.CrossRefGoogle Scholar
  16. de Groot, P.F., Frissen, M.N., de Clercq, N.C., and Nieuwdorp, M. (2017). Fecal microbiota transplantation in metabolic syndrome: History, present and future. Gut Microbes 8, 253–267.CrossRefGoogle Scholar
  17. Delsuc, F., Metcalf, J.L., Wegener Parfrey, L., Song, S.J., González, A., and Knight, R. (2014). Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23, 1301–1317.CrossRefGoogle Scholar
  18. Diaz Heijtz, R., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108, 3047–3052.CrossRefGoogle Scholar
  19. Ding, Y., Wu, Q., Hu, Y.B., Wang, X., Nie, Y.G., Wu, X.P., and Wei, F.W. (2017). Advances and prospects of gut microbiome in wild mammals. Acta Theriologica Sinica 37, 399–406.Google Scholar
  20. Ehrlich, S.D. (2011). MetaHIT: The European Union Project on metagenomics of the human intestinal tract. In Metagenomics of the Human Body, K.E. Nelson, ed. (New York: Springer), pp. 307–316.CrossRefGoogle Scholar
  21. Ezenwa, V.O., Gerardo, N.M., Inouye, D.W., Medina, M., and Xavier, J.B. (2012). Animal behavior and the microbiome. Science 338, 198–199.CrossRefGoogle Scholar
  22. Falony, G., Joossens, M., Vieira-Silva, S., Wang, J., Darzi, Y., Faust, K., Kurilshikov, A., Bonder, M.J., Valles-Colomer, M., Vandeputte, D., et al. (2016). Population-level analysis of gut microbiome variation. Science 352, 560–564.CrossRefGoogle Scholar
  23. Ferreiro, A., Crook, N., Gasparrini, A.J., and Dantas, G. (2018). Multiscale evolutionary dynamics of host-associated microbiomes. Cell 172, 1216–1227.CrossRefGoogle Scholar
  24. Fietz, K., Rye Hintze, C.O., Skovrind, M., Kjærgaard Nielsen, T., Limborg, M.T., Krag, M.A., Palsbøll, P.J., Hestbjerg Hansen, L., Rask Møller, P., and Gilbert, M.T.P. (2018). Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species. Microbiome 6, 82.CrossRefGoogle Scholar
  25. Flint, H.J., Scott, K.P., Louis, P., and Duncan, S.H. (2012). The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9, 577–589.CrossRefGoogle Scholar
  26. Foster, J.A., and McVey Neufeld, K.A. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosciences 36, 305–312.CrossRefGoogle Scholar
  27. Ghannoum, M.A., Jurevic, R.J., Mukherjee, P.K., Cui, F., Sikaroodi, M., Naqvi, A., and Gillevet, P.M. (2010). Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6, e1000713.CrossRefGoogle Scholar
  28. Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B. S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359.CrossRefGoogle Scholar
  29. Godoy-Vitorino, F., Goldfarb, K.C., Karaoz, U., Leal, S., Garcia-Amado, M.A., Hugenholtz, P., Tringe, S.G., Brodie, E.L., and Dominguez-Bello, M.G. (2012). Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 6, 531–541.CrossRefGoogle Scholar
  30. Goldberg, T.L., Gillespie, T.R., Rwego, I.B., Estoff, E.L., and Chapman, C. A. (2008). Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerg Infect Dis 14, 1375–1382.CrossRefGoogle Scholar
  31. Gomez, A., Petrzelkova, K., Yeoman, C.J., Vlckova, K., Mrázek, J., Koppova, I., Carbonero, F., Ulanov, A., Modry, D., Todd, A., et al. (2015). Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24, 2551–2565.CrossRefGoogle Scholar
  32. Gomez, A., Rothman, J.M., Petrzelkova, K., Yeoman, C.J., Vlckova, K., Umaña, J.D., Carr, M., Modry, D., Todd, A., Torralba, M., et al. (2016). Temporal variation selects for diet–microbe co-metabolic traits in the gut of Gorilla spp. ISME J 10, 514–526.CrossRefGoogle Scholar
  33. Groussin, M., Mazel, F., Sanders, J.G., Smillie, C.S., Lavergne, S., Thuiller, W., and Alm, E.J. (2017). Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun 8, 14319.CrossRefGoogle Scholar
  34. Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68, 669–685.CrossRefGoogle Scholar
  35. Hooper, L.V., Littman, D.R., and Macpherson, A.J. (2012). Interactions between the microbiota and the immune system. Science 336, 1268–1273.CrossRefGoogle Scholar
  36. Huson, D.H., Auch, A.F., Qi, J., and Schuster, S.C. (2007). MEGAN analysis of metagenomic data. Genome Res 17, 377–386.CrossRefGoogle Scholar
  37. Ingala, M.R., Simmons, N.B., Wultsch, C., Krampis, K., Speer, K.A., and Perkins, S.L. (2018). Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Front Microbiol 9, 803.CrossRefGoogle Scholar
  38. Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L., and Gordon, J.I. (2011). Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336.CrossRefGoogle Scholar
  39. Klaassens, E.S., de Vos, W.M., and Vaughan, E.E. (2007). Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73, 1388–1392.CrossRefGoogle Scholar
  40. Kohl, K.D., Weiss, R.B., Cox, J., Dale, C., and Dearing, M.D. (2014). Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17, 1238–1246.CrossRefGoogle Scholar
  41. Kong, F., Zhao, J., Han, S., Zeng, B., Yang, J., Si, X., Yang, B., Yang, M., Xu, H., and Li, Y. (2014). Characterization of the gut microbiota in the red panda (Ailurus fulgens). PLoS ONE 9, e87885.CrossRefGoogle Scholar
  42. Lagier, J.C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., Bittar, F., Fournous, G., Gimenez, G., Maraninchi, M., et al. (2012). Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiol Infection 18, 1185–1193.CrossRefGoogle Scholar
  43. Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. (2008). Evolution of mammals and their gut microbes. Science 320, 1647–1651.CrossRefGoogle Scholar
  44. Li, Y., Guo, W., Han, S., Kong, F., Wang, C., Li, D., Zhang, H., Yang, M., Xu, H., Zeng, B., et al. (2015). The evolution of the gut microbiota in the giant and the red pandas. Sci Rep 5, 10185.CrossRefGoogle Scholar
  45. Marchesi, J.R., Adams, D.H., Fava, F., Hermes, G.D.A., Hirschfield, G.M., Hold, G., Quraishi, M.N., Kinross, J., Smidt, H., Tuohy, K.M., et al. (2016). The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339.CrossRefGoogle Scholar
  46. Menke, S., Wasimuddin, S., Meier, M., Melzheimer, J., Mfune, J.K.E., Heinrich, S., Thalwitzer, S., Wachter, B., and Sommer, S. (2014). Oligotyping reveals differences between gut microbiomes of freeranging sympatric Namibian carnivores (Acinonyx jubatus, Canis mesomelas) on a bacterial species-like level. Front Microbiol 5, 526.CrossRefGoogle Scholar
  47. Meyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9, 386.CrossRefGoogle Scholar
  48. Moeller, A.H., Peeters, M., Ndjango, J.B., Li, Y., Hahn, B.H., and Ochman, H. (2013). Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res 23, 1715–1720.CrossRefGoogle Scholar
  49. Moeller, A.H., Caro-Quintero, A., Mjungu, D., Georgiev, A.V., Lonsdorf, E.V., Muller, M.N., Pusey, A.E., Peeters, M., Hahn, B.H., and Ochman, H. (2016). Cospeciation of gut microbiota with hominids. Science 353, 380–382.CrossRefGoogle Scholar
  50. Moran, N.A., and Sloan, D.B. (2015). The hologenome concept: helpful or hollow? PLoS Biol 13, e1002311.CrossRefGoogle Scholar
  51. Muegge, B.D., Kuczynski, J., Knights, D., Clemente, J.C., González, A., Fontana, L., Henrissat, B., Knight, R., and Gordon, J.I. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974.CrossRefGoogle Scholar
  52. Nelson, T.M., Rogers, T.L., Carlini, A.R., and Brown, M.V. (2013). Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ Microbiol 15, 1132–1145.CrossRefGoogle Scholar
  53. Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., and Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science 336, 1262–1267.CrossRefGoogle Scholar
  54. Nishida, A.H., and Ochman, H. (2018). Rates of gut microbiome divergence in mammals. Mol Ecol 27, 1884–1897.CrossRefGoogle Scholar
  55. O'Toole, P.W., and Jeffery, I.B. (2015). Gut microbiota and aging. Science 350, 1214–1215.CrossRefGoogle Scholar
  56. Palmer, C., Bik, E.M., DiGiulio, D.B., Relman, D.A., and Brown, P.O. (2007). Development of the human infant intestinal microbiota. PLoS Biol 5, e177–1573.CrossRefGoogle Scholar
  57. Pope, P.B., Denman, S.E., Jones, M., Tringe, S.G., Barry, K., Malfatti, S.A., McHardy, A.C., Cheng, J.F., Hugenholtz, P., McSweeney, C.S., et al. (2010). Adaptation to herbivory by the tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci USA 107, 14793–14798.CrossRefGoogle Scholar
  58. Qin, N., Dong, X., and Zhao, L. (2018). Microbiome: from community metabolism to host diseases. Sci China Life Sci 61, 741–743.CrossRefGoogle Scholar
  59. Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., and Gordon, J.I. (2010). Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338.CrossRefGoogle Scholar
  60. Rosenberg, D.K., Noon, B.R., and Meslow, E.C. (1997). Biological corridors: Form, function, and efficacy. BioScience 47, 677–687.CrossRefGoogle Scholar
  61. Round, J.L., and Mazmanian, S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9, 313–323.CrossRefGoogle Scholar
  62. Sanders, J.G., Beichman, A.C., Roman, J., Scott, J.J., Emerson, D., McCarthy, J.J., and Girguis, P.R. (2015). Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun 6, 8285.CrossRefGoogle Scholar
  63. Schmidt, C. (2015). thinking from the gut. Nature 518, S12–S14.CrossRefGoogle Scholar
  64. Sharpton, T.J. (2018). Role of the gut microbiome in vertebrate evolution. mSystems 3, e00174–17–17.CrossRefGoogle Scholar
  65. Shapira, M. (2016). Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol 31, 539–549.CrossRefGoogle Scholar
  66. Simpson, S., Ash, C., Pennisi, E., and Travis, J. (2005). The gut: inside out. Science 307, 1895.CrossRefGoogle Scholar
  67. Sommer, F., and Bäckhed, F. (2013). The gut microbiota — masters of host development and physiology. Nat Rev Microbiol 11, 227–238.CrossRefGoogle Scholar
  68. Sommer, F., Ståhlman, M., Ilkayeva, O., Arnemo, J.M., Kindberg, J., Josefsson, J., Newgard, C.B., Fröbert, O., and Bäckhed, F. (2016). The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14, 1655–1661.CrossRefGoogle Scholar
  69. Soverini, M., Quercia, S., Biancani, B., Furlati, S., Turroni, S., Biagi, E., Consolandi, C., Peano, C., Severgnini, M., Rampelli, S., et al. (2016). The bottlenose dolphin (Tursiops truncatus) faecal microbiota. FEMS Microbiol Ecol 92, fiw055.CrossRefGoogle Scholar
  70. Spor, A., Koren, O., and Ley, R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9, 279–290.CrossRefGoogle Scholar
  71. Srivathsan, A., Ang, A., Vogler, A.P., and Meier, R. (2016). Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. Front Zool 13, 17.CrossRefGoogle Scholar
  72. Stumpf, R.M., Gomez, A., Amato, K.R., Yeoman, C.J., Polk, J.D., Wilson, B.A., Nelson, K.E., White, B.A., and Leigh, S.R. (2016). Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol Conserv 199, 56–66.CrossRefGoogle Scholar
  73. Sun, B., Wang, X., Bernstein, S., Huffman, M.A., Xia, D.P., Gu, Z., Chen, R., Sheeran, L.K., Wagner, R.S., and Li, J. (2016). Marked variation between winter and spring gut microbiota in free-ranging Tibetan Macaques (Macaca thibetana). Sci Rep 6, 26035.CrossRefGoogle Scholar
  74. Tremaroli, V., and Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249.CrossRefGoogle Scholar
  75. Trosvik, P., Rueness, E.K., de Muinck, E.J., Moges, A., and Mekonnen, A. (2018). Ecological plasticity in the gastrointestinal microbiomes of Ethiopian Chlorocebus monkeys. Sci Rep 8, 20.CrossRefGoogle Scholar
  76. Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. (2007). The human microbiome project. Nature 449, 804–810.CrossRefGoogle Scholar
  77. Wall, R., Ross, R.P., Ryan, C.A., Hussey, S., Murphy, B., Fitzgerald, G.F., and Stanton, C. (2009). Role of gut microbiota in early infant development. Clin Med Pediatr 2009, 45–54.Google Scholar
  78. Wei, F., Swaisgood, R., Hu, Y., Nie, Y., Yan, L., Zhang, Z., Qi, D., and Zhu, L. (2015). Progress in the ecology and conservation of giant pandas. Conserv Biol 29, 1497–1507.CrossRefGoogle Scholar
  79. Wei, F., Wang, X., and Wu, Q. (2015). The giant panda gut microbiome. Trends Microbiol 23, 450–452.CrossRefGoogle Scholar
  80. Weng, F.C.H., Yang, Y.J., and Wang, D. (2016). Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics 17, 1024.CrossRefGoogle Scholar
  81. Wiebler, J.M., Kohl, K.D., Lee Jr, R.E., and Costanzo, J.P. (2018). Urea hydrolysis by gut bacteria in a hibernating frog: evidence for ureanitrogen recycling in Amphibia. Proc R Soc B 285, 20180241.CrossRefGoogle Scholar
  82. Wu, Q., Wang, X., Ding, Y., Hu, Y., Nie, Y., Wei, W., Ma, S., Yan, L., Zhu, L., and Wei, F. (2017). Seasonal variation in nutrient utilization shapes gut microbiome structure and function in wild giant pandas. Proc R Soc B 284, 20170955.CrossRefGoogle Scholar
  83. Zhang, X.Y., Sukhchuluun, G., Bo, T.B., Chi, Q.S., Yang, J.J., Chen, B., Zhang, L., and Wang, D.H. (2018). Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome 6, 103.CrossRefGoogle Scholar
  84. Zhang, Z., Xu, D., Wang, L., Hao, J., Wang, J., Zhou, X., Wang, W., Qiu, Q., Huang, X., Zhou, J., et al. (2016). Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol 26, 1873–1879.CrossRefGoogle Scholar
  85. Zhernakova, A., Kurilshikov, A., Bonder, M.J., Tigchelaar, E.F., Schirmer, M., Vatanen, T., Mujagic, Z., Vila, A.V., Falony, G., Vieira-Silva, S., et al. (2016). Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569.CrossRefGoogle Scholar
  86. Zhu, L., Wu, Q., Dai, J., Zhang, S., and Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA 108, 17714–17719.CrossRefGoogle Scholar
  87. Zhu, L., Wu, Q., Deng, C., Zhang, M., Zhang, C., Chen, H., Lu, G., and Wei, F. (2018a). Adaptive evolution to a high purine and fat diet of carnivorans revealed by gut microbiomes and host genomes. Environ Microbiol 20, 1711–1722.CrossRefGoogle Scholar
  88. Zhu, L.F., Yang, Z.S., Yao, R., Xu, L.L., Chen, H., Gu, X.D., Wu, T.G., and Yang, X.Y. (2018b). Potential mechanism of detoxification of cyanide compounds by gut microbiomes of bamboo-eating pandas. MSphere 3, e00229–18.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fuwen Wei
    • 1
    • 2
    • 3
    Email author
  • Qi Wu
    • 1
  • Yibo Hu
    • 1
    • 3
  • Guangping Huang
    • 1
  • Yonggang Nie
    • 1
    • 3
  • Li Yan
    • 1
  1. 1.CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina

Personalised recommendations