Advertisement

Science China Life Sciences

, Volume 61, Issue 12, pp 1602–1603 | Cite as

New cytosine base editor for plant genome editing

  • Zhenxiang Li
  • Xiangyu Xiong
  • Jian-Feng LiEmail author
Research Highlight
  • 32 Downloads

References

  1. Chen, Y., Wang, Z., Ni, H., Xu, Y., Chen, Q., and Jiang, L. (2017). CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci 60, 520–523.CrossRefGoogle Scholar
  2. Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541–544.CrossRefGoogle Scholar
  3. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424.CrossRefGoogle Scholar
  4. Kosicki, M., Tomberg, K., and Bradley, A. (2018). Erratum: Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36, 899.CrossRefGoogle Scholar
  5. Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., et al. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126.e15.CrossRefGoogle Scholar
  6. Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., Zhang, D., et al. (2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221.CrossRefGoogle Scholar
  7. Ma, Y., Zhang, J., Yin, W., Zhang, Z., Song, Y., and Chang, X. (2016). Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13, 1029–1035.CrossRefGoogle Scholar
  8. Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M., Miyabe, A., Araki, M., Hara, K.Y., et al. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729.CrossRefGoogle Scholar
  9. Ran, Y., Liang, Z., and Gao, C. (2017). Current and future editing reagent delivery systems for plant genome editing. Sci China Life Sci 60, 490–505.CrossRefGoogle Scholar
  10. Ren, B., Yan, F., Kuang, Y., Li, N., Zhang, D., Lin, H., and Zhou, H. (2017). A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci 60, 516–519.CrossRefGoogle Scholar
  11. Wang, X., Li, J., Wang, Y., Yang, B., Wei, J., Wu, J., Wang, R., Huang, X., Chen, J., and Yang, L. (2018). Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nat Biotechnol 533, 946–949.Google Scholar
  12. Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., and Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 2, 950–953.Google Scholar
  13. Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., and Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438–440.CrossRefGoogle Scholar

Copyright information

© Science in China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-sen UniversityGuangzhouChina

Personalised recommendations