Advertisement

Science China Life Sciences

, Volume 61, Issue 12, pp 1566–1582 | Cite as

Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling

  • Zhao Liu
  • Ghulam Qanmber
  • Lili Lu
  • Wenqiang Qin
  • Ji Liu
  • Jie Li
  • Shuya Ma
  • Zhaoen YangEmail author
  • Zuoren YangEmail author
Research Paper
  • 49 Downloads

Abstract

Brassinosteroids (BRs), which are essential phytohormones for plant growth and development, are important for cotton fiber development. Additionally, BES1 transcription factors are critical for BR signal transduction. However, cotton BES1 family genes have not been comprehensively characterized. In this study, we identified 11 BES1 genes in G. arboreum, 11 in G. raimondii, 16 in G. barbadense, and 22 in G. hirsutum. The BES1 sequences were significantly conserved in the Arabidopsis thaliana, rice, and upland cotton genomes. A total of 94 BES1 genes from 10 different plant species were divided into three clades according to the neighbor-joining and minimum-evolution methods. Moreover, the exon/intron patterns and motif distributions were highly conserved among the A. thaliana and cotton BES1 genes. The collinearity among the orthologs from the At and Dt subgenomes was estimated. Segmental duplications in the At and Dt subgenomes were primarily responsible for the expansion of the cotton BES1 gene family. Of the GhBES1 genes, GhBES1.4_At/Dt exhibited BL-induced expression and was predominantly expressed in fibers. Furthermore, Col-0/mGhBES1.4_At plants produced curled leaves with long and bent petioles. These transgenic plants also exhibited decreased hypocotyl sensitivity to brassinazole and constitutive BR induced/repressed gene expression patterns. The constitutive BR responses of the plants overexpressing mGhBES1.4_At were similar to those of the bes1-D mutant.

Keywords

G. hirsutum brassinosteroids BES1 phylogenetic collinearity duplication hormones curled leaves hypocotyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Peng Huo (Zhengzhou Research Center, Institute of Cotton Research of CAAS, Zhengzhou) for technical assistance. We thank Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac) for editing the English text of a draft of this manuscript. This work was supported by the National Natural Science Foundation of China (31501345) and Young Elite Scientist Sponsorship Program by CAST (China Association for Science and Technology).

Supplementary material

11427_2018_9412_MOESM1_ESM.pdf (291 kb)
Supplementary material, approximately 291 KB.
11427_2018_9412_MOESM2_ESM.pdf (472 kb)
Supplementary material, approximately 471 KB.
11427_2018_9412_MOESM3_ESM.pdf (194 kb)
Supplementary material, approximately 193 KB.
11427_2018_9412_MOESM4_ESM.pdf (304 kb)
Supplementary material, approximately 303 KB.
11427_2018_9412_MOESM5_ESM.pdf (386 kb)
Supplementary material, approximately 386 KB.
11427_2018_9412_MOESM6_ESM.pdf (766 kb)
Supplementary material, approximately 766 KB.
11427_2018_9412_MOESM7_ESM.docx (18 kb)
Supplementary material, approximately 17.8 KB.
11427_2018_9412_MOESM8_ESM.docx (16 kb)
Table. S1 Oligonucleotide primers used in this study

References

  1. Alves, M.S., Dadalto, S.P., Gonçalves, A.B., De Souza, G.B., Barros, V.A., and Fietto, L.G. (2013). Plant bZIP transcription factors responsive to pathogens: a review. Int J Molecul Sci 14, 7815–7828.CrossRefGoogle Scholar
  2. Asami, T., Min, Y.K., Nagata, N., Yamagishi, K., Takatsuto, S., Fujioka, S., Murofushi, N., Yamaguchi, I., and Yoshida, S. (2000). Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol 123, 93–100.CrossRefGoogle Scholar
  3. Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369–W373.Google Scholar
  4. Belkhadir, Y., and Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytol 206, 522–540.CrossRefGoogle Scholar
  5. Cannon, S.B., Mitra, A., Baumgarten, A., Young, N.D., and May, G. (2004). The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4, 10.CrossRefGoogle Scholar
  6. Chaiwanon, J., and Wang, Z.Y. (2015). Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr Biol 25, 1031–1042.CrossRefGoogle Scholar
  7. Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res 14, 1188–1190.CrossRefGoogle Scholar
  8. Dossa, K., Diouf, D., and Cissé, N. (2016). Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response. Front Plant Sci 7.Google Scholar
  9. Du, X., Huang, G., He, S., Yang, Z., Sun, G., Ma, X., Li, N., Zhang, X., Sun, J., Liu, M., et al. (2018). Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat Genet 50, 796–802.CrossRefGoogle Scholar
  10. Guo, H., Li, L., Aluru, M., Aluru, S., and Yin, Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Curr Opin Plant Biol 16, 545–553.CrossRefGoogle Scholar
  11. Guo, Z., Fujioka, S., Blancaflor, E.B., Miao, S., Gou, X., and Li, J. (2010). TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22, 1161–1173.CrossRefGoogle Scholar
  12. Han, J., Pan, Y., Wang, X., Zhang, Y., and Ma, Z. (2016). Antisense expression of Gossypium barbadense UGD6 in Arabidopsis thaliana significantly alters cell wall composition. Sci China Life Sci 59, 213–218.CrossRefGoogle Scholar
  13. Hu, B., Jin, J., Guo, A.Y., Zhang, H., Luo, J., and Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31, 1296–1297.CrossRefGoogle Scholar
  14. Huang, J., Chen, F., Wu, S., Li, J., and Xu, W. (2016). Cotton GhMYB7 is predominantly expressed in developing fibers and regulates secondary cell wall biosynthesis in transgenic Arabidopsis. Sci China Life Sci 59, 194–205.CrossRefGoogle Scholar
  15. Iwamoto, M., Maekawa, M., Saito, A., Higo, H., and Higo, K. (1998). Evolutionary relationship of plant catalase genes inferred from exonintron structures: isozyme divergence after the separation of monocots and dicots. TAG Theor Appl Genets 97, 9–19.CrossRefGoogle Scholar
  16. Jia, J., Zhao, P., Cheng, L., Yuan, G., Yang, W., Liu, S., Chen, S., Qi, D., Liu, G., and Li, X. (2018). MADS-box family genes in sheepgrass and their involvement in abiotic stress responses. BMC Plant Biol 18, 42.CrossRefGoogle Scholar
  17. Jin, X., Wang, L., He, L., Feng, W., and Wang, X. (2016). Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes. Sci China Life Sci 59, 154–163.CrossRefGoogle Scholar
  18. Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240.CrossRefGoogle Scholar
  19. Keuskamp, D.H., Sasidharan, R., Vos, I., Peeters, A.J.M., Voesenek, L.A.C. J., and Pierik, R. (2011). Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant J 67, 208–217.CrossRefGoogle Scholar
  20. Kim, H.J., and Triplett, B.A. (2004). Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218, 516–524.Google Scholar
  21. Kim, T.W., and Wang, Z.Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61, 681–704.CrossRefGoogle Scholar
  22. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., and Marra, M.A. (2009). Circos: an information aesthetic for comparative genomics. Genome Res 19, 1639–1645.CrossRefGoogle Scholar
  23. Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870–1874.CrossRefGoogle Scholar
  24. Letunic, I., Doerks, T., and Bork, P. (2015). SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43, D257–D260.Google Scholar
  25. Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R.J., Ma, Z., Shang, H., Ma, X., Wu, J., et al. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530.CrossRefGoogle Scholar
  26. Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., Li, Q., Ma, Z., Lu, C., Zou, C., et al. (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46, 567–572.CrossRefGoogle Scholar
  27. Li, J., Yu, D., Qanmber, G., Lu, L., Wang, L., Zheng, L., Liu, Z., Wu, H., Liu, X., Chen, Q., et al. (2018). GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis. Sci China Life Sci 8.Google Scholar
  28. Li, J., Nagpal, P., Vitart, V., McMorris, T.C., and Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401.CrossRefGoogle Scholar
  29. Li, J.M., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299–1301.Google Scholar
  30. Li, L., Yu, X., Thompson, A., Guo, M., Yoshida, S., Asami, T., Chory, J., and Yin, Y. (2009). Arabidopsis MYB30 is a direct target of BES1 and cooperates with BES1 to regulate brassinosteroid-induced gene expression. Plant J 58, 275–286.CrossRefGoogle Scholar
  31. Nemhauser, J.L., Mockler, T.C., and Chory, J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2, 1460–1471.CrossRefGoogle Scholar
  32. Paterson, A.H., Wendel, J.F., Gundlach, H., Guo, H., Jenkins, J., Jin, D., Llewellyn, D., Showmaker, K.C., Shu, S., Udall, J., et al. (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492, 423–427.CrossRefGoogle Scholar
  33. Prince, V.E., and Pickett, F.B. (2002). Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3, 827–837.CrossRefGoogle Scholar
  34. Qanmber, G., Yu, D., Li, J., Wang, L., Ma, S., Lu, L., Yang, Z., and Li, F. (2018). Genome-wide identification and expression analysis of Gossypium RING-H2 finger E3 ligase genes revealed their roles in fiber development, and phytohormone and abiotic stress responses. J Cotton Res 1, 1.CrossRefGoogle Scholar
  35. Rechsteiner, M., and Rogers, S.W. (1996). PEST sequences and regulation by proteolysis. Trends Biochem Sci 21, 267–271.CrossRefGoogle Scholar
  36. Ren, Z., Yu, D., Yang, Z., Li, C., Qanmber, G., Li, Y., Li, J., Liu, Z., Lu, L., Wang, L., et al. (2017). Genome-wide identification of the MIKC-Type MADS-Box gene family in Gossypium hirsutum L. unravels their roles in flowering. Front Plant Sci 8, 384.Google Scholar
  37. Roy, S.W., and Gilbert, W. (2005). Complex early genes. Proc Natl Acad Sci USA 102, 1986–1991.CrossRefGoogle Scholar
  38. Roy, S.W., and Gilbert, W. (2006). The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7, 211–221.Google Scholar
  39. Roy, S.W., and Penny, D. (2007). A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain. Mol Biol Evol 24, 1447–1457.CrossRefGoogle Scholar
  40. Ryu, H., Cho, H., Bae, W., and Hwang, I. (2014). Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat Commun 5, 4138.CrossRefGoogle Scholar
  41. Shang, H., Wang, Z., Zou, C., Zhang, Z., Li, W., Li, J., Shi, Y., Gong, W., Chen, T., Liu, A., et al. (2016). Comprehensive analysis of NAC transcription factors in diploid Gossypium: sequence conservation and expression analysis uncover their roles during fiber development. Sci China Life Sci 59, 142–153.CrossRefGoogle Scholar
  42. Shi, Y.H., Zhu, S.W., Mao, X.Z., Feng, J.X., Qin, Y.M., Zhang, L., Cheng, J., Wei, L.P., Wang, Z.Y., and Zhu, Y.X. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651–664.CrossRefGoogle Scholar
  43. Sun, Y., Fan, X.Y., Cao, D.M., Tang, W., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S., Oh, E., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19, 765–777.CrossRefGoogle Scholar
  44. Sun, Y., Veerabomma, S., Abdel-Mageed, H.A., Fokar, M., Asami, T., Yoshida, S., and Allen, R.D. (2005). Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46, 1384–1391.CrossRefGoogle Scholar
  45. Suyama, M., Torrents, D., and Bork, P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 34, W609–W612.CrossRefGoogle Scholar
  46. Tang, K., Dong, C., and Liu, J. (2016). Genome-wide analysis and expression profiling of the phospholipase D gene family in Gossypium arboreum. Sci China Life Sci 59, 130–141.CrossRefGoogle Scholar
  47. Theißen, G., Melzer, R., and Rümpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259–3271.CrossRefGoogle Scholar
  48. Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q., and Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26, 4376–4393.CrossRefGoogle Scholar
  49. Unterholzner, S.J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K.G., Mayer, K.F., Sieberer, T., and Poppenberger, B. (2015). Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. Plant Cell 27, 2261–2272.CrossRefGoogle Scholar
  50. Vert, G., and Chory, J. (2006). Downstream nuclear events in brassinosteroid signalling. Nature 441, 96–100.CrossRefGoogle Scholar
  51. Vilarrasa-Blasi, J., González-García, M.P., Frigola, D., Fàbregas-Vallvé, N., Alexiou, K.G., López-Bigas, N., Rivas, S., Jauneau, A., Lohmann, J.U., Benfey, P.N., et al. (2015). Regulation of plant stem cell quiescence by a brassinosteroid signaling module. Dev Cell 33, 238.CrossRefGoogle Scholar
  52. Wang, H., Yang, C., Zhang, C., Wang, N., Lu, D., Wang, J., Zhang, S., Wang, Z.X., Ma, H., and Wang, X. (2011a). Dual role of BKI1 and 14-3-3 s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell 21, 825–834.CrossRefGoogle Scholar
  53. Wang, K., Huang, G., and Zhu, Y. (2016). Transposable elements play an important role during cotton genome evolution and fiber cell development. Sci China Life Sci 59, 112–121.CrossRefGoogle Scholar
  54. Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313, 1118–1122.CrossRefGoogle Scholar
  55. Wang, X., Wang, H., Wang, J., Sun, R., Wu, J., Liu, S., Bai, Y., Mun, J.H., Bancroft, I., Cheng, F., et al. (2011b). The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43, 1035–1039.CrossRefGoogle Scholar
  56. Wang, Y., Sun, S., Zhu, W., Jia, K., Yang, H., and Wang, X. (2013). Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27, 681–688.CrossRefGoogle Scholar
  57. Wang, Z.Y., Bai, M.Y., Oh, E., and Zhu, J.Y. (2012). Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46, 701–724.CrossRefGoogle Scholar
  58. Wang, Z.Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., et al. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2, 505–513.CrossRefGoogle Scholar
  59. Wendel, J.F., and Cronn, R.C. (2003). Polyploidy and the evolutionary history of cotton. Adv Agron 78, 139–186.CrossRefGoogle Scholar
  60. Wu, P., Song, X.M., Wang, Z., Duan, W.K., Hu, R., Wang, W.L., Li, Y., and Hou, X. (2016). Genome-wide analysis of the BES1 transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Growth Regul 80, 291–301.CrossRefGoogle Scholar
  61. Yang, C.J., Zhang, C., Lu, Y.N., Jin, J.Q., and Wang, X.L. (2011). The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4, 588–600.CrossRefGoogle Scholar
  62. Yang, M., Li, C., Cai, Z., Hu, Y., Nolan, T., Yu, F., Yin, Y., Xie, Q., Tang, G., and Wang, X. (2017a). SINAT E3 ligases control the light-mediated stability of the brassinosteroid-activated transcription factor BES1 in Arabidopsis. Dev Cell 41, 47–58.CrossRefGoogle Scholar
  63. Yang, Z., Gong, Q., Qin, W., Yang, Z., Cheng, Y., Lu, L., Ge, X., Zhang, C., Wu, Z., and Li, F. (2017b). Genome-wide analysis of WOX genes in upland cotton and their expression pattern under different stresses. BMC Plant Biol 17, 113.CrossRefGoogle Scholar
  64. Yang, Z., Gong, Q., Wang, L., Jin, Y., Xi, J., Li, Z., Qin, W., Yang, Z., Lu, L., Chen, Q., et al. (2018). Genome-wide study of YABBY genes in upland cotton and their expression patterns under different stresses. Front Genet 9, 33.CrossRefGoogle Scholar
  65. Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586–1591.CrossRefGoogle Scholar
  66. Yang, Z., Zhang, C., Yang, X., Liu, K., Wu, Z., Zhang, X., Zheng, W., Xun, Q., Liu, C., Lu, L., et al. (2014). PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol 203, 437–448.CrossRefGoogle Scholar
  67. Ye, H., Li, L., Guo, H., and Yin, Y. (2012). MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 109, 20142–20147.CrossRefGoogle Scholar
  68. Yin, G., Xu, H., Xiao, S., Qin, Y., Li, Y., Yan, Y., and Hu, Y. (2013). The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups. BMC Plant Biol 13, 148.CrossRefGoogle Scholar
  69. Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181–191.CrossRefGoogle Scholar
  70. Yu, X., Li, L., Li, L., Guo, M., Chory, J., and Yin, Y. (2008). Modulation of brassinosteroid-regulated gene expression by jumonji domaincontaining proteins ELF6 and REF6 in Arabidopsis. Proc Natl Acad Sci USA 105, 7618–7623.CrossRefGoogle Scholar
  71. Yu, X., Li, L., Zola, J., Aluru, M., Ye, H., Foudree, A., Guo, H., Anderson, S., Aluru, S., Liu, P., et al. (2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65, 634–646.CrossRefGoogle Scholar
  72. Yuan, T., Fujioka, S., Takatsuto, S., Matsumoto, S., Gou, X., He, K., Russell, S.D., and Li, J. (2007). BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana. Plant J 51, 220–233.CrossRefGoogle Scholar
  73. Zhang, B., Liu, J., Yang, Z.E., Chen, E.Y., Zhang, C.J., Zhang, X.Y., and Li, F.G. (2018). Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L.. BMC Genomics 19, 348.CrossRefGoogle Scholar
  74. Zhang, D., Ye, H., Guo, H., Johnson, A., Zhang, M., Lin, H., and Yin, Y. (2014). Transcription factor HAT1 is phosphorylated by BIN2 kinase and mediates brassinosteroid repressed gene expression in Arabidopsis. Plant J 77, 59–70.CrossRefGoogle Scholar
  75. Zhang, T., Hu, Y., Jiang, W., Fang, L., Guan, X., Chen, J., Zhang, J., Saski, C.A., Scheffler, B.E., Stelly, D.M., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531–537.Google Scholar
  76. Zou, C., Wang, Q., Lu, C., Yang, W., Zhang, Y., Cheng, H., Feng, X., Prosper, M.A., and Song, G. (2016). Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). Sci China Life Sci 59, 164–171.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhao Liu
    • 1
  • Ghulam Qanmber
    • 1
  • Lili Lu
    • 1
  • Wenqiang Qin
    • 1
  • Ji Liu
    • 1
  • Jie Li
    • 1
  • Shuya Ma
    • 1
  • Zhaoen Yang
    • 1
    Email author
  • Zuoren Yang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
  2. 2.School of Agricultural SciencesZhengzhou UniversityZhengzhouChina

Personalised recommendations