Advertisement

Science China Life Sciences

, Volume 61, Issue 11, pp 1445–1450 | Cite as

Nobel goes to immune checkpoint—Innovative cancer treatment by immunotherapy

  • Jing Li
  • Chen Dong
News and Views
  • 35 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Beijing Municipal Science and Technology (Grant Number Z171100000417005).

References

  1. Allison, J.P., van Elsas, A., and Hurwitz, A.A. Stimulation of T Cells Against Self-Antigens Using CTLA-4 Blocking Agents. United States, US20090269353, 1996/12/4.Google Scholar
  2. ASCO. (2018). FDA Approves Pembrolizumab for Advanced Cervical Cancer with Disease Progression During or After Chemotherapy. https://doi.org/www.asco.org/advocacy-policy/asco-in-action/fda-approvespembrolizumab-advanced-cervical-cancer-disease.Google Scholar
  3. Austin, J.W., Lu, P., Majumder, P., Ahmed, R., and Boss, J.M. (2014). STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J Immunol 192, 4876–4886.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brunet, J.F., Denizot, F., Luciani, M.F., Roux-Dosseto, M., Suzan, M., Mattei, M.G., and Golstein, P. (1987). A new member of the immunoglobulin superfamily—CTLA-4. Nature 328, 267–270.CrossRefPubMedGoogle Scholar
  5. Callahan, M.K., Postow, M.A., and Wolchok, J.D. (2016). Targeting T cell co-receptors for cancer therapy. Immunity 44, 1069–1078.CrossRefPubMedGoogle Scholar
  6. Chuang, E., Fisher, T.S., Morgan, R.W., Robbins, M.D., Duerr, J.M., Van der Heiden, M.G., Gardner, J.P., Hambor, J.E., Neveu, M.J., and Thompson, C.B. (2000). The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity (13, 313–322.CrossRefPubMedGoogle Scholar
  7. Collins, A.V., Brodie, D.W., Gilbert, R.J.C., Iaboni, A., Manso-Sancho, R., Walse, B., Stuart, D.I., van der Merwe, P.A., and Davis, S.J. (2002). The interaction properties of costimulatory molecules revisited. Immunity (17, 201–210.CrossRefPubMedGoogle Scholar
  8. Concha-Benavente, F., Srivastava, R.M., Trivedi, S., Lei, Y., Chandran, U., Seethala, R.R., Freeman, G.J., and Ferris, R.L. (2016). Identification of the cell-intrinsic and -extrinsic pathways downstream of EGFR and IFN that Induce PD-L1 expression in head and neck cancer. Cancer Res (76, 1031–1043.CrossRefPubMedGoogle Scholar
  9. Dong, H., Strome, S.E., Salomao, D.R., Tamura, H., Hirano, F., Flies, D.B., Roche, P.C., Lu, J., Zhu, G., Tamada, K., et al. (2002). Erratum: Tumorassociated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med (8, 793–800.CrossRefPubMedGoogle Scholar
  10. Dong, H., Zhu, G., Tamada, K., and Chen, L. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5, 1365–1369.CrossRefPubMedGoogle Scholar
  11. FDA. (2018). FDA approves pembrolizumab for treatment of relapsed or refractory PMBCL. https://doi.org/www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm610670.htm. Google Scholar
  12. Freeman, G.J., Long, A.J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L.J., Malenkovich, N., Okazaki, T., Byrne, M.C., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med (192, 1027–1034.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gandara, D.R., Paul, S.M., Kowanetz, M., Schleifman, E., Zou, W., Li, Y., Rittmeyer, A., Fehrenbacher, L., Otto, G., Malboeuf, C., et al. (2018). Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med (24, 1441–1448.CrossRefPubMedGoogle Scholar
  14. Hodi, F.S., O’Day, S.J., McDermott, D.F., Weber, R.W., Sosman, J.A., Haanen, J.B., Gonzalez, R., Robert, C., Schadendorf, D., Hassel, J.C., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med (363, 711–723.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Honjo, T., Minato, N., Iwai, Y., and Shibayama, S. Treatment method using anti-PD-L1 antibody. United States, JP2002–194491, 2002/7/3.Google Scholar
  16. Huang, A.C., Postow, M.A., Orlowski, R.J., Mick, R., Bengsch, B., Manne, S., Xu, W., Harmon, S., Giles, J.R., Wenz, B., et al. (2017). T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 545, 60–65.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J (11, 3887–3895.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., and Minato, N. (2002). Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA (99, 12293–12297.CrossRefPubMedGoogle Scholar
  19. Kong, K.F., Fu, G., Zhang, Y., Yokosuka, T., Casas, J., Canonigo-Balancio, A.J., Becart, S., Kim, G., Yates, J.R., Kronenberg, M., et al. (2014). Protein kinase C-η controls CTLA-4–mediated regulatory T cell function. Nat Immunol (15, 465–472.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Korman, A.J., Peggs, K.S., and Allison, J.P. (2006). Checkpoint blockade in cancer immunotherapy. Adv Immunol (90, 297–339.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krummel, M.F., and Allison, J.P. (1995). CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182, 459–465.CrossRefPubMedGoogle Scholar
  22. Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J.J., Cowey, C.L., Lao, C.D., Schadendorf, D., Dummer, R., Smylie, M., Rutkowski, P., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med (373, 23–34.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Latchman, Y., Wood, C.R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., Iwai, Y., Long, A.J., Brown, J.A., Nunes, R., et al. (2001). PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2, 261–268.CrossRefPubMedGoogle Scholar
  24. Leach, D.R., Krummel, M.F., and Allison, J.P. (1996). Enhancement of antitumor immunity by CTLA-4 blockade. Science (271, 1734–1736.CrossRefPubMedGoogle Scholar
  25. Ledford, H. (2017). Tissue-independent cancer drug gets fast-track approval from US regulator. Nature. https://doi.org/www.nature.com/news/tissueindependent-cancer-drug-gets-fast-track-approval-from-us-regulator-1.22054. Google Scholar
  26. Li, J., Lee, Y., Li, Y., Jiang, Y., Lu, H., Zang, W., Zhao, X., Liu, L., Chen, Y., Tan, H., et al. (2018). Co-inhibitory molecule B7 superfamily member 1 expressed by tumor-Infiltrating myeloid cells induces dysfunction of anti-tumor CD8 + T Cells. Immunity (48, 773–786.e5.CrossRefPubMedGoogle Scholar
  27. Li, J., Ni, L., and Dong, C. (2017). Immune checkpoint receptors in cancer: redundant by design? Curr Opin Immunol 45, 37–42.CrossRefPubMedGoogle Scholar
  28. Linsley, P.S., Brady, W., Urnes, M., Grosmaire, L.S., Damle, N.K., and Ledbetter, J.A. (1991). CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174, 561–569.CrossRefPubMedGoogle Scholar
  29. Littman, D.R. (2015). Releasing the brakes on cancer immunotherapy. Cell (162, 1186–1190.CrossRefPubMedGoogle Scholar
  30. Nishimura, H., Nose, M., Hiai, H., Minato, N., and Honjo, T. (1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity (11, 141–151.CrossRefPubMedGoogle Scholar
  31. Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer (12, 252–264.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Pauken, K.E., Sammons, M.A., Odorizzi, P.M., Manne, S., Godec, J., Khan, O., Drake, A.M., Chen, Z., Sen, D.R., Kurachi, M., et al. (2016). Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science (354, 1160–1165.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Postow, M.A., Chesney, J., Pavlick, A.C., Robert, C., Grossmann, K., McDermott, D., Linette, G.P., Meyer, N., Giguere, J.K., Agarwala, S.S., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med (372, 2006–2017.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Rech, A.J., and Vonderheide, R.H. (2013). Dynamic interplay of oncogenes and T cells induces PD-L1 in the tumor microenvironment. Cancer Discovery (3, 1330–1332.CrossRefPubMedGoogle Scholar
  35. Ribas, A., Hamid, O., Daud, A., Hodi, F.S., Wolchok, J.D., Kefford, R., Joshua, A.M., Patnaik, A., Hwu, W.J., Weber, J.S., et al. (2016). Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA (315, 1600–1609.CrossRefPubMedGoogle Scholar
  36. Sakuishi, K., Apetoh, L., Sullivan, J.M., Blazar, B.R., Kuchroo, V.K., and Anderson, A.C. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med (207, 2187–2194.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schildberg, F.A., Klein, S.R., Freeman, G.J., and Sharpe, A.H. (2016). Coinhibitory pathways in the B7-CD28 ligand-rReceptor family. Immunity (44, 955–972.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sen, D.R., Kaminski, J., Barnitz, R.A., Kurachi, M., Gerdemann, U., Yates, K.B., Tsao, H.W., Godec, J., LaFleur, M.W., Brown, F.D., et al. (2016). The epigenetic landscape of T cell exhaustion. Science (354, 1165–1169.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Tivol, E.A., Borriello, F., Schweitzer, A.N., Lynch, W.P., Bluestone, J.A., and Sharpe, A.H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity (3, 541–547.CrossRefPubMedGoogle Scholar
  40. Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., Powderly, J.D., Carvajal, R.D., Sosman, J.A., Atkins, M.B., et al. (2012). Safety, Activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med (366, 2443–2454.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Topalian, S.L., and Sharpe, A.H. (2014). Balance and imbalance in the immune system: life on the edge. Immunity (41, 682–684.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Tumeh, P.C., Harview, C.L., Yearley, J.H., Shintaku, I.P., Taylor, E.J.M., Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., Thompson, C.B., and Bluestone, J.A. (1994). CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413.CrossRefPubMedGoogle Scholar
  44. Waterhouse, P., Penninger, J.M., Timms, E., Wakeham, A., Shahinian, A., Lee, K.P., Thompson, C.B., Griesser, H., and Mak, T.W. (1995). Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science (270, 985–988.CrossRefPubMedGoogle Scholar
  45. Wei, S.C., Levine, J.H., Cogdill, A.P., Zhao, Y., Anang, N.A.A.S., Andrews, M.C., Sharma, P., Wang, J., Wargo, J.A., Pe’er, D., et al. (2017). Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell (170, 1120–1133.e17.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yokosuka, T., Takamatsu, M., Kobayashi-Imanishi, W., Hashimoto-Tane, A., Azuma, M., and Saito, T. (2012). Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med (209, 1201–1217.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Immunology and School of MedicineTsinghua UniversityBeijingChina
  2. 2.Beijing Key Lab for Immunological Research on Chronic DiseasesBeijingChina

Personalised recommendations