Science China Life Sciences

, Volume 61, Issue 12, pp 1477–1485 | Cite as

NK cells in liver homeostasis and viral hepatitis

  • Hui PengEmail author
  • Zhigang TianEmail author
Review From CAS & CAE Members


As an important member of the innate immune system, natural killer (NK) cells are well known for their rapid and efficient immune responses against infectious agents and tumors. NK cells are widely distributed throughout the body and are particularly enriched within the liver, where they display unique phenotypic and functional properties, playing important roles in various liver diseases. Herein, we present an overview of liver NK cell properties with regard to phenotype, function, and subset composition at steady state, and we also summarize the complex reciprocal interactions between liver NK cells and other cell types within the local environment of the liver. We also provide an overview of recent advances demonstrating the roles of NK cells in viral hepatitis, including a discussion of NK cell altered states and their beneficial versus harmful effects during hepatitis B virus and hepatitis C virus infection.


NK cells liver HBV HCV 



This work was supported by the National Natural Science Foundation of China (81788101, 81761128013, 31390433, 81571522, 91642105, 91542114, 91542000) and Chinese Academy of Sciences (XDPB030301).


  1. Ahlenstiel, G., Edlich, B., Hogdal, L.J., Rotman, Y., Noureddin, M., Feld, J. J., Holz, L.E., Titerence, R.H., Liang, T.J., and Rehermann, B. (2011). Early changes in natural killer cell function indicate virologic response to interferon therapy for hepatitis C. Gastroenterology 141, 1231–1239.e2.Google Scholar
  2. Ahlenstiel, G., Martin, M.P., Gao, X., Carrington, M., and Rehermann, B. (2008). Distinct KIR/HLA compound genotypes affect the kinetics of human antiviral natural killer cell responses. J Clin Invest 118, 1017–1026.Google Scholar
  3. Ahlenstiel, G., Titerence, R.H., Koh, C., Edlich, B., Feld, J.J., Rotman, Y., Ghany, M.G., Hoofnagle, J.H., Liang, T.J., Heller, T., et al. (2010). Natural killer cells are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-dependent manner. Gastroenterology 138, 325–335.e2.Google Scholar
  4. Amadei, B., Urbani, S., Cazaly, A., Fisicaro, P., Zerbini, A., Ahmed, P., Missale, G., Ferrari, C., and Khakoo, S.I. (2010). Activation of natural killer cells during acute infection with hepatitis C virus. Gastroenterology 138, 1536–1545.Google Scholar
  5. Andreotti, J.P., Paiva, A.E., Prazeres, P.H.D.M., Guerra, D.A.P., Silva, W. N., Vaz, R.S., Mintz, A., and Birbrair, A. (2018). The role of natural killer cells in the uterine microenvironment during pregnancy. Cell Mol Immunol 15, 941–943.Google Scholar
  6. Aw Yeang, H.X., Piersma, S.J., Lin, Y., Yang, L., Malkova, O.N., Miner, C., Krupnick, A.S., Chapman, W.C., and Yokoyama, W.M. (2017). Cutting edge: human CD49e-NK cells are tissue resident in the liver. J Immunol 198, 1417–1422.Google Scholar
  7. Beraza, N., Malato, Y., Sander, L.E., Al-Masaoudi, M., Freimuth, J., Riethmacher, D., Gores, G.J., Roskams, T., Liedtke, C., and Trautwein, C. (2009). Hepatocyte-specific NEMO deletion promotes NK/NKT celland TRAIL-dependent liver damage. J Exp Med 206, 1727–1737.Google Scholar
  8. Bi, J., Zheng, X., Chen, Y., Wei, H., Sun, R., and Tian, Z. (2014). TIGIT safeguards liver regeneration through regulating natural killer cellhepatocyte crosstalk. Hepatology 60, 1389–1398.Google Scholar
  9. Billerbeck, E., Wolfisberg, R., Fahnøe, U., Xiao, J.W., Quirk, C., Luna, J. M., Cullen, J.M., Hartlage, A.S., Chiriboga, L., Ghoshal, K., et al. (2017). Mouse models of acute and chronic hepacivirus infection. Science 357, 204–208.Google Scholar
  10. Boltjes, A., van Montfoort, N., Biesta, P.J., Op den Brouw, M.L., Kwekkeboom, J., van der Laan, L.J.W., Janssen, H.L.A., Boonstra, A., and Woltman, A.M. (2015). Kupffer cells interact with hepatitis B surface antigen in vivo and in vitro, leading to proinflammatory cytokine production and natural killer cell function. J Infect Dis 211, 1268–1278.Google Scholar
  11. Burt, B.M., Plitas, G., Zhao, Z., Bamboat, Z.M., Nguyen, H.M., Dupont, B., and DeMatteo, R.P. (2009). The lytic potential of human liver NK cells is restricted by their limited expression of inhibitory killer Ig-like receptors. J Immunol 183, 1789–1796.Google Scholar
  12. Chen, Y., Wei, H., Sun, R., Dong, Z., Zhang, J., and Tian, Z. (2007). Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand interaction and natural killer cells. Hepatology 46, 706–715.Google Scholar
  13. Crouse, J., Xu, H.C., Lang, P.A., and Oxenius, A. (2015). NK cells regulating T cell responses: mechanisms and outcome. Trends Immunol 36, 49–58.Google Scholar
  14. Das, A., Ellis, G., Pallant, C., Lopes, A.R., Khanna, P., Peppa, D., Chen, A., Blair, P., Dusheiko, G., Gill, U., et al. (2012). IL-10-producing regulatory B cells in the pathogenesis of chronic hepatitis B virus infection. J Immunol 189, 3925–3935.Google Scholar
  15. De Maria, A., Fogli, M., Mazza, S., Basso, M., Picciotto, A., Costa, P., Congia, S., Mingari, M.C., and Moretta, L. (2007). Increased natural cytotoxicity receptor expression and relevant IL-10 production in NK cells from chronically infected viremic HCV patients. Eur J Immunol 37, 445–455.Google Scholar
  16. Dong, Z., Wei, H., Sun, R., Hu, Z., Gao, B., and Tian, Z. (2004). Involvement of natural killer cells in PolyI:C-induced liver injury. J Hepatology 41, 966–973.Google Scholar
  17. Fasbender, F., Widera, A., Hengstler, J.G., and Watzl, C. (2016). Natural killer cells and liver fibrosis. Front Immunol 7, 19.Google Scholar
  18. Fernández-Álvarez, S., Gutiérrez-de Juan, V., Zubiete-Franco, I., Barbier-Torres, L., Lahoz, A., Parés, A., Luka, Z., Wagner, C., Lu, S.C., Mato, J. M., et al. (2015). TRAIL-producing NK cells contribute to liver injury and related fibrogenesis in the context of GNMT deficiency. Lab Invest 95, 223–236.Google Scholar
  19. Fisicaro, P., Valdatta, C., Boni, C., Massari, M., Mori, C., Zerbini, A., Orlandini, A., Sacchelli, L., Missale, G., and Ferrari, C. (2009). Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 58, 974–982.Google Scholar
  20. Fu, B., Zhou, Y., Ni, X., Tong, X., Xu, X., Dong, Z., Sun, R., Tian, Z., and Wei, H. (2017). Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113.e6.Google Scholar
  21. Gao, B. (2016). Basic liver immunology. Cell Mol Immunol 13, 265–266.Google Scholar
  22. Gao, B., Jeong, W.I., and Tian, Z. (2008). Liver: An organ with predominant innate immunity. Hepatology 47, 729–736.Google Scholar
  23. Gao, B., and Radaeva, S. (2013). Natural killer and natural killer T cells in liver fibrosis. BioChim Biophysica Acta (BBA) -Mol Basis Dis 1832, 1061–1069.Google Scholar
  24. Geddawy, A., Ibrahim, Y.F., Elbahie, N.M., and Ibrahim, M.A. (2017). Direct acting anti-hepatitis C virus drugs: clinical pharmacology and future direction. j translational internal med 5, 8–17.Google Scholar
  25. Guidotti, L.G., Rochford, R., Chung, J., Shapiro, M., Purcell, R., and Chisari, F.V. (1999). Viral clearance without destruction of infected cells during acute HBV infection. Science 284, 825–829.Google Scholar
  26. Gur, C., Doron, S., Kfir-Erenfeld, S., Horwitz, E., Abu-Tair, L., Safadi, R., and Mandelboim, O. (2012). NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 61, 885–893.Google Scholar
  27. Harmon, C., Robinson, M.W., Fahey, R., Whelan, S., Houlihan, D.D., Geoghegan, J., and O’Farrelly, C. (2016). Tissue-resident Eomeshi Tbetlo CD56bright NK cells with reduced proinflammatory potential are enriched in the adult human liver. Eur J Immunol 46, 2111–2120.Google Scholar
  28. Horras, C.J., Lamb, C.L., and Mitchell, K.A. (2011). Regulation of hepatocyte fate by interferon-γ. Cytokine Growth Factor Rev 22, 35–43.Google Scholar
  29. Horst, A.K., Neumann, K., Diehl, L., and Tiegs, G. (2016). Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 13, 277–292.Google Scholar
  30. Hou, X., Zhou, R., Wei, H., Sun, R., and Tian, Z. (2009). NKG2D-retinoic acid early inducible-1 recognition between natural killer cells and Kupffer cells in a novel murine natural killer cell-dependent fulminant hepatitis. Hepatology 49, 940–949.Google Scholar
  31. Huang, M., Sun, R., Wei, H., and Tian, Z. (2013). Simultaneous knockdown of multiple ligands of innate receptor NKG2D prevents natural killer cell-mediated fulminant hepatitis in mice. Hepatology 57, 277–288.Google Scholar
  32. Ishiyama, K., Ohdan, H., Ohira, M., Mitsuta, H., Arihiro, K., and Asahara, T. (2006). Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 43, 362–372.Google Scholar
  33. Jeong, W.I., Park, O., Radaeva, S., and Gao, B. (2006). STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 44, 1441–1451.Google Scholar
  34. Kahraman, A., Schlattjan, M., Kocabayoglu, P., Yildiz-Meziletoglu, S., Schlensak, M., Fingas, C.D., Wedemeyer, I., Marquitan, G., Gieseler, R. K., Baba, H.A., et al. (2010). Major histocompatibility complex class Irelated chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology 51, 92–102.Google Scholar
  35. Khakoo, S.I., Thio, C.L., Martin, M.P., Brooks, C.R., Gao, X., Astemborski, J., Cheng, J., Goedert, J.J., Vlahov, D., Hilgartner, M., et al. (2004). HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874.Google Scholar
  36. Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., Yee, H., Zender, L., and Lowe, S.W. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667.Google Scholar
  37. Lang, P.A., Lang, K.S., Xu, H.C., Grusdat, M., Parish, I.A., Recher, M., Elford, A.R., Dhanji, S., Shaabani, N., Tran, C.W., et al. (2012). Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci USA 109, 1210–1215.Google Scholar
  38. Lassen, M.G., Lukens, J.R., Dolina, J.S., Brown, M.G., and Hahn, Y.S. (2010). Intrahepatic IL-10 maintains NKG2A+ Ly49-liver NK cells in a functionally hyporesponsive state. J Immunol 184, 2693–2701.Google Scholar
  39. Li, F., Wei, H., Wei, H., Gao, Y., Xu, L., Yin, W., Sun, R., and Tian, Z. (2013). Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 144, 392–401.Google Scholar
  40. Li, H., Zhai, N., Wang, Z., Song, H., Yang, Y., Cui, A., Li, T., Wang, G., Niu, J., Crispe, I.N., et al. (2018). Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 67, 2035–2044.Google Scholar
  41. Li, Y., Cao, G., Zheng, X., Wang, J., Wei, H., Tian, Z., and Sun, R. (2013). CRACC-CRACC interaction between Kupffer and NK cells contributes to poly I:C/D-GalN induced hepatitis. PLoS ONE 8, e76681.Google Scholar
  42. Li, Y., Yin, J., Li, T., Huang, S., Yan, H., Leavenworth, J.M., and Wang, X. (2015). NK cell-based cancer immunotherapy: from basic biology to clinical application. Sci China Life Sci 58, 1233–1245.Google Scholar
  43. Liang, S. (2003). IFNa regulates NK cell cytotoxicity through STAT1 pathway. Cytokine 23, 190–199.Google Scholar
  44. Liu, S., Chen, L., Zeng, Y., Si, L., Guo, X., Zhou, J., Fang, D., Zeng, G., and Jiang, L. (2016). Suppressed expression of miR-378 targeting gzmb in NK cells is required to control dengue virus infection. Cell Mol Immunol 13, 700–708.Google Scholar
  45. Liu, Y., Zheng, J., Liu, Y., Wen, L., Huang, L., Xiang, Z., Lam, K.T., Lv, A., Mao, H., Lau, Y.L., et al. (2018). Uncompromised NK cell activation is essential for virus-specific CTL activity during acute influenza virus infection. Cell Mol Immunol 15, 827–837.Google Scholar
  46. Lunemann, S., Malone, D.F.G., Hengst, J., Port, K., Grabowski, J., Deterding, K., Markova, A., Bremer, B., Schlaphoff, V., Cornberg, M., et al. (2014). Compromised function of natural killer cells in acute and chronic viral hepatitis. J Infect Dis 209, 1362–1373.Google Scholar
  47. Maini, M.K., and Peppa, D. (2013). NK cells: a double-edged sword in chronic hepatitis B virus infection. Front Immunol 4, 57.Google Scholar
  48. Marquardt, N., Béziat, V., Nyström, S., Hengst, J., Ivarsson, M.A., Kekäläinen, E., Johansson, H., Mjösberg, J., Westgren, M., Lankisch, T. O., et al. (2015). Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J Immunol 194, 2467–2471.Google Scholar
  49. Martín-Fontecha, A., Thomsen, L.L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat Immunol 5, 1260–1265.Google Scholar
  50. Melhem, A., Muhanna, N., Bishara, A., Alvarez, C.E., Ilan, Y., Bishara, T., Horani, A., Nassar, M., Friedman, S.L., and Safadi, R. (2006). Antifibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J Hepatology 45, 60–71.Google Scholar
  51. Miyagi, T., Gil, M.P., Wang, X., Louten, J., Chu, W.M., and Biron, C.A. (2007). High basal STAT4 balanced by STAT1 induction to control type 1 interferon effects in natural killer cells. J Exp Med 204, 2383–2396.Google Scholar
  52. Miyagi, T., Takehara, T., Nishio, K., Shimizu, S., Kohga, K., Li, W., Tatsumi, T., Hiramatsu, N., Kanto, T., and Hayashi, N. (2010). Altered interferon-a-signaling in natural killer cells from patients with chronic hepatitis C virus infection. J Hepatology 53, 424–430.Google Scholar
  53. Moroso, V., Metselaar, H.J., Mancham, S., Tilanus, H.W., Eissens, D., van der Meer, A., van der Laan, L.J.W., Kuipers, E.J., Joosten, I., and Kwekkeboom, J. (2010). Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation. Liver Transpl 16, 895–908.Google Scholar
  54. Ning, G., Li, Y.T., Chen, Y.M., Zhang, Y., Zeng, Y.F., and Lin, C.S. (2017). Dynamic changes of the frequency of classic and inflammatory monocytes subsets and natural killer cells in chronic hepatitis C patients treated by direct-acting antiviral agents. Can J Gastroenterol 2017, 1–8.Google Scholar
  55. Ochi, M., Ohdan, H., Mitsuta, H., Onoe, T., Tokita, D., Hara, H., Ishiyama, K., Zhou, W., Tanaka, Y., and Asahara, T. (2004). Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39, 1321–1331.Google Scholar
  56. Okazaki, A., Hiraga, N., Imamura, M., Hayes, C.N., Tsuge, M., Takahashi, S., Aikata, H., Abe, H., Miki, D., Ochi, H., et al. (2012). Severe necroinflammatory reaction caused by natural killer cell-mediated Fas/Fas ligand interaction and dendritic cells in human hepatocyte chimeric mouse. Hepatology 56, 555–566.Google Scholar
  57. Oliviero, B., Varchetta, S., Paudice, E., Michelone, G., Zaramella, M., Mavilio, D., De Filippi, F., Bruno, S., and Mondelli, M.U. (2009). Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 137, 1151–1160.e7.Google Scholar
  58. Peng, H., Jiang, X., Chen, Y., Sojka, D.K., Wei, H., Gao, X., Sun, R., Yokoyama, W.M., and Tian, Z. (2013). Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123, 1444–1456.Google Scholar
  59. Peng, H., and Sun, R. (2017). Liver-resident NK cells and their potential functions. Cell Mol Immunol 14, 890–894.Google Scholar
  60. Peng, H., and Tian, Z. (2016). Tissue-resident natural killer cells in the livers. Sci China Life Sci 59, 1218–1223.Google Scholar
  61. Peng, H., Wisse, E., and Tian, Z. (2016). Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 13, 328–336.Google Scholar
  62. Peppa, D., Gill, U.S., Reynolds, G., Easom, N.J.W., Pallett, L.J., Schurich, A., Micco, L., Nebbia, G., Singh, H.D., Adams, D.H., et al. (2013). Upregulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 210, 99–114.Google Scholar
  63. Peppa, D., Micco, L., Javaid, A., Kennedy, P.T.F., Schurich, A., Dunn, C., Pallant, C., Ellis, G., Khanna, P., Dusheiko, G., et al. (2010). Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog 6, e1001227.Google Scholar
  64. Poggi, A., and Zocchi, M.R. (2014). NK cell autoreactivity and autoimmune diseases. Front Immunol 5.Google Scholar
  65. Protzer, U., Maini, M.K., and Knolle, P.A. (2012). Living in the liver: hepatic infections. Nat Rev Immunol 12, 201–213.Google Scholar
  66. Radaeva, S., Sun, R., Jaruga, B., Nguyen, V.T., Tian, Z., and Gao, B. (2006). Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452.Google Scholar
  67. Raulet, D.H., Gasser, S., Gowen, B.G., Deng, W., and Jung, H. (2013). Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol 31, 413–441.Google Scholar
  68. Rehermann, B. (2013). Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat Med 19, 859–868.Google Scholar
  69. Robinson, M.W., Harmon, C., and O’Farrelly, C. (2016). Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 13, 267–276.Google Scholar
  70. Rockey, D.C., Maher, J.J., Jarnagin, W.R., Gabbiani, G., and Friedman, S. L. (1992). Inhibition of rat hepatic lipocyte activation in culture by interferon-γ. Hepatology 16, 776–784.Google Scholar
  71. Sato, Y., Tsukada, K., Matsumot, Y., and Ab, T. (1993). Interferon-γ inhibits liver regeneration by stimulating major histocompatibility complex class II antigen expression by regenerating liver. Hepatology 18, 340–346.Google Scholar
  72. Saunders, P.M., Vivian, J.P., O’Connor, G.M., Sullivan, L.C., Pymm, P., Rossjohn, J., and Brooks, A.G. (2015). A bird’s eye view of NK cell receptor interactions with their MHC class I ligands. Immunol Rev 267, 148–166.Google Scholar
  73. Serti, E., Chepa-Lotrea, X., Kim, Y.J., Keane, M., Fryzek, N., Liang, T.J., Ghany, M., and Rehermann, B. (2015). Successful interferon-free therapy of chronic hepatitis C virus infection normalizes natural killer cell function. Gastroenterology 149, 190–200.e2.Google Scholar
  74. Shin, E.C., Sung, P.S., and Park, S.H. (2016). Immune responses and immunopathology in acute and chronic viral hepatitis. Nat Rev Immunol 16, 509–523.Google Scholar
  75. Simonetta, F., Alvarez, M., and Negrin, R.S. (2017). Natural killer cells in graft-versus-host-disease after allogeneic hematopoietic cell transplantation. Front Immunol 8, 465.Google Scholar
  76. Sojka, D.K., Plougastel-Douglas, B., Yang, L., Pak-Wittel, M.A., Artyomov, M.N., Ivanova, Y., Zhong, C., Chase, J.M., Rothman, P.B., Yu, J., et al. (2014). Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3, e01659.Google Scholar
  77. Spaan, M., van Oord, G., Kreefft, K., Hou, J., Hansen, B.E., Janssen, H.L. A., de Knegt, R.J., and Boonstra, A. (2016). Immunological analysis during interferon-free therapy for chronic hepatitis C virus infection reveals modulation of the natural killer cell compartment. J Infect Dis 213, 216–223.Google Scholar
  78. Stegmann, K.A., Robertson, F., Hansi, N., Gill, U., Pallant, C., Christophides, T., Pallett, L.J., Peppa, D., Dunn, C., Fusai, G., et al. (2016). CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver. Sci Rep 6, 26157.Google Scholar
  79. Strunz, B., Hengst, J., Deterding, K., Manns, M.P., Cornberg, M., Ljunggren, H.G., Wedemeyer, H., and Björkström, N.K. (2018). Chronic hepatitis C virus infection irreversibly impacts human natural killer cell repertoire diversity. Nat Commun 9, 2275.Google Scholar
  80. Sun, C., Fu, B., Gao, Y., Liao, X., Sun, R., Tian, Z., and Wei, H. (2012). TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human nk cells contributes to HBV persistence. PLoS Pathog 8, e1002594.Google Scholar
  81. Sun, R., and Gao, B. (2004). Negative regulation of liver regeneration by innate immunity (natural killer cells/interferon-γ). Gastroenterology 127, 1525–1539.Google Scholar
  82. Takeda, K., Cretney, E., Hayakawa, Y., Ota, T., Akiba, H., Ogasawara, K., Yagita, H., Kinoshita, K., Okumura, K., and Smyth, M.J. (2005). TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105, 2082–2089.Google Scholar
  83. Thimme, R., Wieland, S., Steiger, C., Ghrayeb, J., Reimann, K.A., Purcell, R.H., and Chisari, F.V. (2003). CD8+ T cells mediate viral clearance and disease pathogenesis during acute hepatitis B virus infection. J Virology 77, 68–76.Google Scholar
  84. Thomas, R., and Yang, X. (2016). NK-DC crosstalk in immunity to microbial infection. J Immunol Res 2016, 1–7.Google Scholar
  85. Tian, Z., Cao, X., Chen, Y., and Lyu, Q. (2016). Regional immunity in tissue homeostasis and diseases. Sci China Life Sci 59, 1205–1209.Google Scholar
  86. Tian, Z., Chen, Y., and Gao, B. (2013). Natural killer cells in liver disease. Hepatology 57, 1654–1662.Google Scholar
  87. Tong, S., Liu, G., Li, M., Li, X., Liu, Q., Peng, H., Li, S., Ren, H., and Yin, W. (2017). Natural killer cell activation contributes to hepatitis B viral control in a mouse model. Sci Rep 7, 314.Google Scholar
  88. Tsuchida, T., and Friedman, S.L. (2017). Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 14, 397–411.Google Scholar
  89. Tu, Z., Bozorgzadeh, A., Pierce, R.H., Kurtis, J., Crispe, I.N., and Orloff, M.S. (2008). TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med 205, 233–244.Google Scholar
  90. Vidal-Castiñeira, J.R., López-Vázquez, A., Díaz-Peña, R., Alonso-Arias, R., Martínez-Borra, J., Pérez, R., Fernández-Suárez, J., Melón, S., Prieto, J., Rodrigo, L., et al. (2010). Effect of killer immunoglobulinlike receptors in the response to combined treatment in patients with chronic hepatitis C virus infection. J Virology 84, 475–481.Google Scholar
  91. Vilarinho, S., Ogasawara, K., Nishimura, S., Lanier, L.L., and Baron, J.L. (2007). Blockade of NKG2D on NKT cells prevents hepatitis and the acute immune response to hepatitis B virus. Proc Natl Acad Sci USA 104, 18187–18192.Google Scholar
  92. Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., Yokoyama, W.M., and Ugolini, S. (2011). Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49.Google Scholar
  93. Waggoner, S.N., Cornberg, M., Selin, L.K., and Welsh, R.M. (2011). Natural killer cells act as rheostats modulating antiviral T cells. Nature 481, 394–398.Google Scholar
  94. Wensveen, F.M., Jelencic, V., Valentic, S., Šestan, M., Wensveen, T.T., Theurich, S., Glasner, A., Mendrila, D., Štimac, D., Wunderlich, F.T., et al. (2015). NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol 16, 376–385.Google Scholar
  95. Wisse, E., van’t Noordende, J.M., van der Meulen, J., and Daems, W.T. (1976). The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res 173, 423–435.Google Scholar
  96. Wu, X., Chen, Y., Wei, H., Sun, R., and Tian, Z. (2012). Development of murine hepatic NK cells during ontogeny: comparison with spleen NK cells. Clinical Dev Immunol 2012, 1–12.Google Scholar
  97. Wu, X., and Tian, Z. (2017). Gut-liver axis: gut microbiota in shaping hepatic innate immunity. Sci China Life Sci 60, 1191–1196.Google Scholar
  98. Xu, L., Yin, W., Sun, R., Wei, H., and Tian, Z. (2014). Kupffer cell-derived IL-10 plays a key role in maintaining humoral immune tolerance in hepatitis B virus-persistent mice. Hepatology 59, 443–452.Google Scholar
  99. Yang, P.L., Althage, A., Chung, J., and Chisari, F.V. (2002). Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA 99, 13825–13830.Google Scholar
  100. Zhang, Z., Zhang, S., Zou, Z., Shi, J., Zhao, J., Fan, R., Qin, E., Li, B., Li, Z., Xu, X., et al. (2011). Hypercytolytic activity of hepatic natural killer cells correlates with liver injury in chronic hepatitis B patients. Hepatology 53, 73–85.Google Scholar
  101. Zheng, B., Zhu, Y.J., Wang, H.Y., and Chen, L. (2017). Gender disparity in hepatocellular carcinoma (HCC): multiple underlying mechanisms. Sci China Life Sci 60, 575–584.Google Scholar
  102. Zheng, M., Sun, R., Wei, H., and Tian, Z. (2016). NK cells help induce anti–hepatitis B virus CD8+ T cell immunity in mice. J Immunol 196, 4122–4131.Google Scholar
  103. Zheng, Q., Zhu, Y.Y., Chen, J., Ye, Y.B., Li, J.Y., Liu, Y.R., Hu, M.L., Zheng, Y.C., and Jiang, J.J. (2015). Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection. Clin Exp Immunol 180, 499–508.Google Scholar
  104. Zheng, S.J., Wang, P., Tsabary, G., and Chen, Y.H. (2004). Critical roles of TRAIL in hepatic cell death and hepatic inflammation. J Clin Invest 113, 58–64.Google Scholar
  105. Zou, Y., Chen, T., Han, M., Wang, H., Yan, W., Song, G., Wu, Z., Wang, X., Zhu, C., Luo, X., et al. (2010). Increased killing of liver NK cells by Fas/Fas ligand and NKG2D/NKG2D ligand contributes to hepatocyte necrosis in virus-induced liver failure. J Immunol 184, 466–475.Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Institute of ImmunologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations