Advertisement

Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny

  • Qingfeng Liu
  • Yanhua Qi
  • Qiuli Liang
  • Jia Song
  • Junmei Liu
  • Wuhui Li
  • Yuqin Shu
  • Min Tao
  • Chun Zhang
  • Qinbo Qin
  • Jing Wang
  • Shaojun Liu
Research Paper
  • 14 Downloads

Abstract

The white crucian carp (Carassius auratus cuvieri, WCC) not only is one of the most economically important fish in Asia, characterized by strong reproductive ability and rapid growth rates, but also represents a good germplasm to produce hybrid progenies with heterosis. Gene knockout technique provides a safe and acceptant way for fish breeding. Achieving gene knockout in WCC and its hybrid progeny will be of great importance for both genetic studies and hybridization breeding. Tyrosinase (TYR) is a key enzyme in melanin synthesis. Depletion of tyr in zebrafish and mice results in mosaic pigmentation or total albinism. Here, we successfully used CRISPR-Cas9 to target tyr in WCC and its hybrid progeny (WR) derived from the cross of WCC (♀) and red crucian carp (Carassius auratus red var., RCC, ♂). The level of TYR protein was significantly reduced in mutant WCC. Both the mutant WCC and the mutant WR showed different degrees of melanin reduction compared with the wild-type sibling control fish, resulting from different mutation efficiency ranging from 60% to 90%. In addition, the transcriptional expression profiles of a series of pivotal pigment synthesis genes, i.e. tyrp1, mitfa, mitfb, dct and sox10, were down-regulated in tyr-CRISPR WCC, which ultimately caused a reduction in melanin synthesis. These results demonstrated that tyr plays a key role in melanin synthesis in WCC and WR, and CRISPR-Cas9 is an effective tool for modifying the genome of economical fish. Furthermore, the tyr-CRISPR models could be valuable in understanding fundamental mechanisms of pigment formation in non-model fish.

Keywords

white crucian carp hybridization CRISPR-Cas9 tyrosinase pigmentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31430088, 31730098), the earmarked fund for China Agriculture Research System (CARS-45), the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486), the Natural Science Foundation of Hunan Province (14JJ2062), and the Research Foundation of Education Bureau of Hunan Province, China (16B160).

Supplementary material

11427_2018_9404_MOESM1_ESM.docx (22 kb)
Supplementary material, approximately 22.1 KB.

References

  1. Altschmied, J., Delfgaauw, J., Wilde, B., Duschl, J., Bouneau, L., Volff, J. N., Schartl, M. (2002). Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161, 259–267.Google Scholar
  2. Aspengren, S., Sköld, H.N., and Wallin, M. (2009). Different strategies for color change. Cell Mol Life Sci 66, 187–191.CrossRefGoogle Scholar
  3. Bartley, D.M., Rana, K., and Immink, A.J. (2000). The use of inter-specific hybrids in aquaculture and fisheries reviews in fish. Rev Fish Biol Fisheries 10, 325–337.CrossRefGoogle Scholar
  4. Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., and Marraffini, L.A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41, 7429–7437.CrossRefGoogle Scholar
  5. Braasch, I., Liedtke, D., Volff, J.N., and Schartl, M. (2009). Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigm Cell Melanoma Res 22, 839–850.CrossRefGoogle Scholar
  6. Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013). Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res 23, 465–472.CrossRefGoogle Scholar
  7. Chakrapani, V., Patra, S.K., Panda, R.P., Rasal, K.D., Jayasankar, P., and Barman, H.K. (2016). Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61, 242–247.CrossRefGoogle Scholar
  8. Chen, J., Cui, X., Jia, S., Luo, D., Cao, M., Zhang, Y., Hu, H., Huang, K., Zhu, Z., and Hu, W. (2016). Disruption of dmc1 produces abnormal sperm in medaka (Oryzias latipes). Sci Rep 6, 30912.CrossRefGoogle Scholar
  9. Chen, J., Wang, W., Tian, Z., Dong, Y., Dong, T., Zhu, H., Zhu, Z., Hu, H., and Hu, W. (2018). Efficient gene transfer and gene editing in sterlet (acipenser ruthenus). Front Genet 9, 117.CrossRefGoogle Scholar
  10. Chen, Z.J. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58, 377–406.CrossRefGoogle Scholar
  11. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.CrossRefGoogle Scholar
  12. Cui, Z., Liu, Y., Wang, W., Wang, Q., Zhang, N., Lin, F., Wang, N., Shao, C., Dong, Z., Li, Y., et al. (2017). Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 7, 42213.CrossRefGoogle Scholar
  13. Feng, K., Luo, H., Li, Y., Chen, J., Wang, Y., Sun, Y., Zhu, Z., and Hu, W. (2017). High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases. Sci Bull 62, 162–164.CrossRefGoogle Scholar
  14. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23, 1229–1232.CrossRefGoogle Scholar
  15. Guo, X., Liu, S., and Liu, Y. (2006). Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics 172, 1745–1749.CrossRefGoogle Scholar
  16. Hall, T, A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series, 95–98.Google Scholar
  17. Hubbard, J.K., Uy, J.A.C., Hauber, M.E., Hoekstra, H.E., and Safran, R.J. (2010). Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genets 26, 231–239.CrossRefGoogle Scholar
  18. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R.J., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227–229.CrossRefGoogle Scholar
  19. Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110, 13904–13909.CrossRefGoogle Scholar
  20. Kelsh, R.N. (2004). Genetics and evolution of pigment patterns in fish. Pigment Cell Res 17, 326–336.CrossRefGoogle Scholar
  21. Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., et al. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681–683.CrossRefGoogle Scholar
  22. Li, M., Yang, H., Zhao, J., Fang, L., Shi, H., Li, M., Sun, Y., Zhang, X., Jiang, D., Zhou, L., et al. (2014). Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197, 591–599.CrossRefGoogle Scholar
  23. Li, S., Wang, C., Yu, W., Zhao, S., and Gong, Y. (2012). Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PLoS ONE 7, e36592.CrossRefGoogle Scholar
  24. Liu, Q., Qi, Y., Liang, Q., Xu, X., Hu, F., Wang, J., Xiao, J., Wang, S., Li, W., Tao, M., et al. (2018). The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). Sci China Life Sci 61, 1079–1089.CrossRefGoogle Scholar
  25. Liu, S., Qin, Q., Xiao, J., Lu, W., Shen, J., Li, W., Liu, J., Duan, W., Zhang, C., Tao, M., et al. (2007). The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance. Genetics 176, 1023–1034.CrossRefGoogle Scholar
  26. Liu, Z., Liu, S., Yao, J., Bao, L., Zhang, J., Li, Y., Jiang, C., Sun, L., Wang, R., Zhang, Y., et al. (2016). The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7, 11757.CrossRefGoogle Scholar
  27. Luo, K.K., Xiao, J., Liu, S.J., Wang, J., He, W.G., Hu, J., Qin, Q.B., Zhang, C., Tao, M., and Liu, Y. (2011). Massive production of all-female diploids and triploids in the crucian carp. Int J Biol Sci 7, 487–495.CrossRefGoogle Scholar
  28. Ma, M., Ye, A.Y., Zheng, W., and Kong, L. (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res Int 5, 1–4.Google Scholar
  29. Men, K., Duan, X., He, Z., Yang, Y., Yao, S., and Wei, Y. (2017). CRISPR/Cas9-mediated correction of human genetic disease. Sci China Life Sci 60, 447–457.CrossRefGoogle Scholar
  30. Nishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y., and Nishikawa, S.I. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860.CrossRefGoogle Scholar
  31. Oetting, W.S., and King, R.A. (1999). Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat 13, 99–115.CrossRefGoogle Scholar
  32. Protas, M.E., and Patel, N.H. (2008). Evolution of coloration patterns. Annu Rev Cell Dev Biol 24, 425–446.CrossRefGoogle Scholar
  33. Ren, L., Li, W., Tao, M., Qin, Q., Luo, J., Chai, J., Tang, C., Xiao, J., Tang, X., Lin, G., et al. (2016). Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep 6, 27040.CrossRefGoogle Scholar
  34. Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., and Huang, X. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23, 720–723.CrossRefGoogle Scholar
  35. Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.CrossRefGoogle Scholar
  36. Wang, J., Xiao, J., Zeng, M., Xu, K., Tao, M., Zhang, C., Duan, W., Liu, W. B., Luo, K.K., Liu, Y., et al. (2015). Genomic variation in the hybrids of white crucian carp and red crucian carp: evidence from ribosomal DNA. Sci China Life Sci 58, 590–601.CrossRefGoogle Scholar
  37. Xu, K., Duan, W., Xiao, J., Tao, M., Zhang, C., Liu, Y., and Liu, S.J. (2015). Development and application of biological technologies in fish genetic breeding. Sci China Life Sci 58, 187–201.CrossRefGoogle Scholar
  38. Yano, A., Nicol, B., Jouanno, E., and Guiguen, Y. (2014). Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases. Mar Biotechnol 16, 243–250.CrossRefGoogle Scholar
  39. Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379.CrossRefGoogle Scholar
  40. Yu, F., Xiao, J., Liang, X.Y., Liu, S.J., Zhou, G.J., Luo, K.K., Liu, Y., Hu, W., Wang, Y.P., and Zhu, Z.Y. (2011). Rapid growth and sterility of growth hormone gene transgenic triploid carp. Chin Sci Bull 56, 1679–1684.CrossRefGoogle Scholar
  41. Zhang, X., Liang, P., Ding, C., Zhang, Z., Zhou, J., Xie, X., Huang, R., Sun, Y., Sun, H., Zhang, J., et al. (2016). Efficient production of genemodified mice using staphylococcus aureus Cas9. Sci Rep 6, 32565.CrossRefGoogle Scholar
  42. Zhang, Z.H., Chen, J., Li, L., Tao, M., Zhang, C., Qin, Q.B., Xiao, J., Liu, Y., and Liu, S.J. (2014). Research advances in animal distant hybridization. Sci China Life Sci 57, 889–902.CrossRefGoogle Scholar
  43. Zhen, S., Hua, L., Takahashi, Y., Narita, S., Liu, Y.H., and Li, Y. (2014). In vitro and in vivo growth suppression of human papillomavirus 16- positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 450, 1422–1426.CrossRefGoogle Scholar
  44. Zhong, Z., Niu, P., Wang, M., Huang, G., Xu, S., Sun, Y., Xu, X., Hou, Y., Sun, X., Yan, Y., et al. (2016). Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6, 22953.CrossRefGoogle Scholar
  45. Zhu, W., Wang, L., Dong, Z., Chen, X., Song, F., Liu, N., Yang, H., and Fu, J. (2016). Comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia. Sci Rep 6, 31347.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qingfeng Liu
    • 1
    • 2
  • Yanhua Qi
    • 1
    • 2
  • Qiuli Liang
    • 1
    • 2
  • Jia Song
    • 1
    • 2
  • Junmei Liu
    • 1
    • 2
  • Wuhui Li
    • 1
    • 2
  • Yuqin Shu
    • 1
    • 2
  • Min Tao
    • 1
    • 2
  • Chun Zhang
    • 1
    • 2
  • Qinbo Qin
    • 1
    • 2
  • Jing Wang
    • 1
    • 2
  • Shaojun Liu
    • 1
    • 2
  1. 1.State Key Laboratory of Developmental Biology of Freshwater FishHunan Normal UniversityChangshaChina
  2. 2.College of Life SciencesHunan Normal UniversityChangshaChina

Personalised recommendations