Science China Life Sciences

, Volume 61, Issue 12, pp 1515–1527 | Cite as

Whole genome engineering by synthesis

  • Zhouqing Luo
  • Qing Yang
  • Binan Geng
  • Shuangying Jiang
  • Shihui Yang
  • Xiaozheng Li
  • Yizhi Cai
  • Junbiao Dai


Whole genome engineering is now feasible with the aid of genome editing and synthesis tools. Synthesizing a genome from scratch allows modifications of the genomic structure and function to an extent that was hitherto not possible, which will finally lead to new insights into the basic principles of life and enable valuable applications. With several recent genome synthesis projects as examples, the technical details to synthesize a genome and applications of synthetic genome are addressed in this perspective. A series of ongoing or future synthetic genomics projects, including the different genomes to be synthesized in GP-write, synthetic minimal genome, massively recoded genome, chimeric genome and synthetic genome with expanded genetic alphabet, are also discussed here with a special focus on theoretical and technical impediments in the design and synthesis process. Synthetic genomics will become a commonplace to engineer pathways and genomes according to arbitrary sets of design principles with the development of high-efficient, low-cost genome synthesis and assembly technologies.


synthetic biology synthetic genome genome engineering functional genomics genome design 



This work was supported by the National Natural Science Foundation of China (31725002), by Bureau of International Cooperation, Chinese Academy of Sciences (172644KYSB20170042) and by the Key Research Program of the Chinese Academy of Sciences (KFZD-SW- 215). We also thank the financial support from Youth Innovation Promotion Association of the Chinese Academy of Sciences (2018396), China Postdoctoral Science Foundation (2017M620393) and Technical Innovation Special Fund of Hubei Province (2018ACA149).


  1. Agmon, N., Mitchell, L.A., Cai, Y., Ikushima, S., Chuang, J., Zheng, A., Choi, W.J., Martin, J.A., Caravelli, K., Stracquadanio, G., et al. (2015). Yeast Golden Gate (yGG) for the efficient assembly of S. cerevisiae transcription units. ACS Synth Biol 4, 853–859.CrossRefGoogle Scholar
  2. Annaluru, N., Muller, H., Mitchell, L.A., Ramalingam, S., Stracquadanio, G., Richardson, S.M., Dymond, J.S., Kuang, Z., Scheifele, L.Z., Cooper, E.M., et al. (2014). Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58.CrossRefGoogle Scholar
  3. Barbieri, E.M., Muir, P., Akhuetie-Oni, B.O., Yellman, C.M., and Isaacs, F. J. (2017). Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes. Cell 171, 1453–1467.e13.CrossRefGoogle Scholar
  4. Blount, B.A., Gowers, G.O.F., Ho, J.C.H., Ledesma-Amaro, R., Jovicevic, D., McKiernan, R.M., Xie, Z.X., Li, B.Z., Yuan, Y.J., and Ellis, T. (2018). Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat Commun 9, 1932.CrossRefGoogle Scholar
  5. Boeke, J.D., Church, G., Hessel, A., Kelley, N.J., Arkin, A., Cai, Y., Carlson, R., Chakravarti, A., Cornish, V.W., Holt, L., et al. (2016). The Genome Project-Write. Science 353, 126–127.CrossRefGoogle Scholar
  6. Caruthers, M.H., Barone, A.D., Beaucage, S.L., Dodds, D.R., Fisher, E.F., McBride, L.J., Matteucci, M., Stabinsky, Z., and Tang, J.Y. (1987). Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods Enzymol 154, 287–313.CrossRefGoogle Scholar
  7. Cello, J., Paul, A.V., and Wimmer, E. (2002). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018.CrossRefGoogle Scholar
  8. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.CrossRefGoogle Scholar
  9. Curran, K.A., Morse, N.J., Markham, K.A., Wagman, A.M., Gupta, A., and Alper, H.S. (2015). Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth Biol 4, 824–832.CrossRefGoogle Scholar
  10. Dai, J., Cai, Y., Yuan, Y., Yang, H., and Boeke, J.D. (2017). Whole genome synthesis: from poliovirus to synthetic yeast. Quant Biol 5, 105–109.CrossRefGoogle Scholar
  11. Davis, J.H., Rubin, A.J., and Sauer, R.T. (2011). Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39, 1131–1141.CrossRefGoogle Scholar
  12. Dean, A.M., and Thornton, J.W. (2007). Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8, 675–688.CrossRefGoogle Scholar
  13. Deaner, M., and Alper, H.S. (2016). Promoter and Terminator Discovery and Engineering. In Synthetic Biology–Metabolic Engineering, (Springer International Publishing), pp. 21–44.CrossRefGoogle Scholar
  14. Dymond, J.S., Richardson, S.M., Coombes, C.E., Babatz, T., Muller, H., Annaluru, N., Blake, W.J., Schwerzmann, J.W., Dai, J., Lindstrom, D. L., et al. (2011). Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477, 471–476.CrossRefGoogle Scholar
  15. Dymond, J., and Boeke, J. (2012). The Saccharomyces cerevisiae SCRaMbLE system and genome minimization. Bioengineered 3, 170–173.CrossRefGoogle Scholar
  16. Eisen, J.A. (2000). Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genets Dev 10, 606–611.CrossRefGoogle Scholar
  17. Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647.CrossRefGoogle Scholar
  18. Gibson, D.G., Benders, G.A., Andrews-Pfannkoch, C., Denisova, E.A., Baden-Tillson, H., Zaveri, J., Stockwell, T.B., Brownley, A., Thomas, D.W., Algire, M.A., et al. (2008a). Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220.CrossRefGoogle Scholar
  19. Gibson, D.G., Benders, G.A., Axelrod, K.C., Zaveri, J., Algire, M.A., Moodie, M., Montague, M.G., Venter, J.C., Smith, H.O., and Hutchison III, C.A. (2008b). One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105, 20404–20409.CrossRefGoogle Scholar
  20. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56.CrossRefGoogle Scholar
  21. Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345.CrossRefGoogle Scholar
  22. Glass, J.I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M.R., Maruf, M., Hutchison III, C.A., Smith, H.O., and Venter, J.C. (2006). Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103, 425–430.CrossRefGoogle Scholar
  23. Gofieau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. (1996). Life with 6000 genes. Science 274, 546–567.CrossRefGoogle Scholar
  24. Guenther, C.M., Kuypers, B.E., Lam, M.T., Robinson, T.M., Zhao, J., and Suh, J. (2014). Synthetic virology: engineering viruses for gene delivery. WIREs Nanomed Nanobiotechnol 6, 548–558.CrossRefGoogle Scholar
  25. Guo, Y., Dong, J., Zhou, T., Auxillos, J., Li, T., Zhang, W., Wang, L., Shen, Y., Luo, Y., Zheng, Y., et al. (2015). YeastFab: the design and construction of standard biological parts for metabolic engineering inSaccharomyces cerevisiae. Nucleic Acids Res 43, e88.CrossRefGoogle Scholar
  26. Hutchison, C.A., Chuang, R.Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., et al. (2016). Design and synthesis of a minimal bacterial genome. Science 351, aad6253.CrossRefGoogle Scholar
  27. Hutchison III, C.A., Peterson, S.N., Gill, S.R., Cline, R.T., White, O., Fraser, C.M., Smith, H.O., and Venter, J.C. (1999). Global transposon mutagenesis and a minimal mycoplasma genome. Science 286, 2165–2169.CrossRefGoogle Scholar
  28. Genome Sequencing Consortium, International Human (2004). Finishing the euchromatic sequence of the human genome. Nature 431, 931–945.Google Scholar
  29. Itaya, M., Tsuge, K., Koizumi, M., and Fujita, K. (2005). From The Cover: Combining two genomes in one cell: Stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci USA 102, 15971–15976.CrossRefGoogle Scholar
  30. Jagtap, U.B., Jadhav, J.P., Bapat, V.A., and Pretorius, I.S. (2017). Synthetic biology stretching the realms of possibility in wine yeast research. Int J Food MicroBiol 252, 24–34.CrossRefGoogle Scholar
  31. Jensen, M.A., and Davis, R.W. (2018). Template-independent enzymatic oligonucleotide synthesis (TiEOS): its history, prospects, and challenges. Biochemistry 57, 1821–1832.CrossRefGoogle Scholar
  32. Jia, B., Wu, Y., Li, B.Z., Mitchell, L.A., Liu, H., Pan, S., Wang, J., Zhang, H.R., Jia, N., Li, B., et al. (2018). Precise control of SCRaMbLE in synthetic haploid and diploid yeast. Nat Commun 9, 1933.CrossRefGoogle Scholar
  33. Juhas, M., Reuss, D.R., Zhu, B., and Commichau, F.M. (2014). Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. Microbiology 160, 2341–2351.CrossRefGoogle Scholar
  34. Kitamura, N., Semler, B.L., Rothberg, P.G., Larsen, G.R., Adler, C.J., Dorner, A.J., Emini, E.A., Hanecak, R., Lee, J.J., van der Werf, S., et al. (1981). Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291, 547–553.CrossRefGoogle Scholar
  35. Koszul, R. (2016). Beyond the bounds of evolution: Synthetic chromosomes… How and what for? Comptes Rendus Biologies 339, 324–328.CrossRefGoogle Scholar
  36. Kuijpers, N.G.A., Chroumpi, S., Vos, T., Solis-Escalante, D., Bosman, L., Pronk, J.T., Daran, J.M., and Daran-Lapujade, P. (2013). One-step assembly and targeted integration of multigene constructs assisted by the I-Sce I meganuclease in Saccharomyces cerevisiae. FEMS Yeast Res 13, 769–781.CrossRefGoogle Scholar
  37. Lee, S.K., Chou, H., Ham, T.S., Lee, T.S., and Keasling, J.D. (2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotech 19, 556–563.CrossRefGoogle Scholar
  38. LeProust, E.M., Peck, B.J., Spirin, K., McCuen, H.B., Moore, B., Namsaraev, E., and Caruthers, M.H. (2010). Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process. Nucleic Acids Res 38, 2522–2540.CrossRefGoogle Scholar
  39. Li, L., Degardin, M., Lavergne, T., Malyshev, D.A., Dhami, K., Ordoukhanian, P., and Romesberg, F.E. (2014). Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J Am Chem Soc 136, 826–829.CrossRefGoogle Scholar
  40. Lin, Q., Jia, B., Mitchell, L.A., Luo, J., Yang, K., Zeller, K.I., Zhang, W., Xu, Z., Stracquadanio, G., Bader, J.S., et al. (2015). RADOM, an efficientin vivo method for assembling designed DNA fragments up to 10 kb long inSaccharomyces cerevisiae. ACS Synth Biol 4, 213–220.CrossRefGoogle Scholar
  41. Liu, W., Luo, Z., Wang, Y., Pham, N.T., Tuck, L., Pérez-Pi, I., Liu, L., Shen, Y., French, C., Auer, M., et al. (2018). Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat Commun 9, 1936.CrossRefGoogle Scholar
  42. Luo, Z., and Dai, J. (2017). Synthetic genomics: the art of design and synthesis (in Chinese). Sheng Wu Gong Cheng Xue Bao 33, 331–342.Google Scholar
  43. Luo, Z., Wang, L., Wang, Y., Zhang, W., Guo, Y., Shen, Y., Jiang, L., Wu, Q., Zhang, C., Cai, Y., et al. (2018). Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES. Nat Commun 9, 1930.CrossRefGoogle Scholar
  44. Malyshev, D.A., Seo, Y.J., Ordoukhanian, P., and Romesberg, F.E. (2009). PCR with an expanded genetic alphabet. J Am Chem Soc 131, 14620–14621.CrossRefGoogle Scholar
  45. Matzas, M., Stähler, P.F., Kefer, N., Siebelt, N., Boisguérin, V., Leonard, J. T., Keller, A., Stähler, C.F., Häberle, P., Gharizadeh, B., et al. (2010). High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat Biotechnol 28, 1291–1294.CrossRefGoogle Scholar
  46. McKusick, V.A. (1997). Genomics: structural and functional studies of genomes. Genomics 45, 244–249.CrossRefGoogle Scholar
  47. Mercy, G., Mozziconacci, J., Scolari, V.F., Yang, K., Zhao, G., Thierry, A., Luo, Y., Mitchell, L.A., Shen, M., Shen, Y., et al. (2017). 3D organization of synthetic and scrambled chromosomes. Science 355, eaaf4597.CrossRefGoogle Scholar
  48. Mitchell, L.A., Chuang, J., Agmon, N., Khunsriraksakul, C., Phillips, N.A., Cai, Y., Truong, D.M., Veerakumar, A., Wang, Y., Mayorga, M., et al. (2015). Versatile genetic assembly system (VEGAS) to assemble pathways for expression inS. cerevisiae. Nucleic Acids Res 43, 6620–6630.CrossRefGoogle Scholar
  49. Mitchell, L.A., Wang, A., Stracquadanio, G., Kuang, Z., Wang, X., Yang, K., Richardson, S., Martin, J.A., Zhao, Y., Walker, R., et al. (2017). Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 355, eaaf4831.CrossRefGoogle Scholar
  50. Murat, F., Armero, A., Pont, C., Klopp, C., and Salse, J. (2017). Reconstructing the genome of the most recent common ancestor of flowering plants. Nat Genet 49, 490–496.CrossRefGoogle Scholar
  51. Noyce, R.S., Lederman, S., and Evans, D.H. (2018). Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS ONE 13, e0188453.CrossRefGoogle Scholar
  52. Ostrov, N., Landon, M., Guell, M., Kuznetsov, G., Teramoto, J., Cervantes, N., Zhou, M., Singh, K., Napolitano, M.G., Moosburner, M., et al. (2016). Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822.CrossRefGoogle Scholar
  53. Pruvost, M., Schwarz, R., Bessa Correia, V., Champlot, S., Braguier, S., Morel, N., Fernandez-Jalvo, Y., Grange, T., and Geigl, E.M. (2007). Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci USA 104, 739–744.CrossRefGoogle Scholar
  54. Racaniello, V.R., and Baltimore, D. (1981). Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome.. Proc Natl Acad Sci USA 78, 4887–4891.CrossRefGoogle Scholar
  55. Randall, R.N., Radford, C.E., Roof, K.A., Natarajan, D.K., and Gaucher, E. A. (2016). An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat Commun 7, 12847.CrossRefGoogle Scholar
  56. Redden, H., and Alper, H.S. (2015). The development and characterization of synthetic minimal yeast promoters. Nat Commun 6, 7810.CrossRefGoogle Scholar
  57. Reese, C.B. (2005). Oligo- and poly-nucleotides: 50 years of chemical synthesis. Org Biomol Chem 3, 3851–3868.CrossRefGoogle Scholar
  58. Richardson, S.M., Mitchell, L.A., Stracquadanio, G., Yang, K., Dymond, J. S., DiCarlo, J.E., Lee, D., Huang, C.L.V., Chandrasegaran, S., Cai, Y., et al. (2017). Design of a synthetic yeast genome. Science 355, 1040–1044.CrossRefGoogle Scholar
  59. Saaem, I., Ma, K.S., Marchi, A.N., LaBean, T.H., and Tian, J. (2010). In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS Appl Mater Interfaces 2, 491–497.CrossRefGoogle Scholar
  60. Sanger, F., Coulson, A.R., Friedmann, T., Air, G.M., Barrell, B.G., Brown, N.L., Fiddes, J.C., Hutchison Iii, C.A., Slocombe, P.M., and Smith, M. (1978). The nucleotide sequence of bacteriophage fX174. J Mol Biol 125, 225–246.CrossRefGoogle Scholar
  61. Schindler, D., Dai, J., and Cai, Y. (2018). Synthetic genomics: a new venture to dissect genome fundamentals and engineer new functions. Curr Opin Chem Biol 46, 56–62.CrossRefGoogle Scholar
  62. Seo, Y.J., Matsuda, S., and Romesberg, F.E. (2009). Transcription of an expanded genetic alphabet. J Am Chem Soc 131, 5046–5047.CrossRefGoogle Scholar
  63. Shen, M.J., Wu, Y., Yang, K., Li, Y., Xu, H., Zhang, H., Li, B.Z., Li, X., Xiao, W.H., Zhou, X., et al. (2018). Heterozygous diploid and interspecies SCRaMbLEing. Nat Commun 9, 1934.CrossRefGoogle Scholar
  64. Shen, Y., Stracquadanio, G., Wang, Y., Yang, K., Mitchell, L.A., Xue, Y., Cai, Y., Chen, T., Dymond, J.S., Kang, K., et al. (2015). SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes. Genome Res 26, 36–49.CrossRefGoogle Scholar
  65. Shen, Y., Wang, Y., Chen, T., Gao, F., Gong, J., Abramczyk, D., Walker, R., Zhao, H., Chen, S., Liu, W., et al. (2017). Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome. Science 355, eaaf4791.CrossRefGoogle Scholar
  66. Si, L., Xu, H., Zhou, X., Zhang, Z., Tian, Z., Wang, Y., Wu, Y., Zhang, B., Niu, Z., Zhang, C., et al. (2016). Generation of influenza A viruses as live but replication-incompetent virus vaccines. Science 354, 1170–1173.CrossRefGoogle Scholar
  67. Sinsheimer, R.L. (1959). A single-stranded deoxyribonucleic acid from bacteriophage fX174. J Mol Biol 1, 43–IN6.CrossRefGoogle Scholar
  68. Smith, H.O., Hutchison III, C.A., Pfannkoch, C., and Venter, J.C. (2003). Generating a synthetic genome by whole genome assembly: X174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA 100, 15440–15445.CrossRefGoogle Scholar
  69. Des Soye, B.J., Patel, J.R., Isaacs, F.J., and Jewett, M.C. (2015). Repurposing the translation apparatus for synthetic biology. Curr Opin Chem Biol 28, 83–90.CrossRefGoogle Scholar
  70. Steensels, J., Gorkovskiy, A., and Verstrepen, K.J. (2018). SCRaMbLEing to understand and exploit structural variation in genomes. Nat Commun 9, 1937.CrossRefGoogle Scholar
  71. Tang, L., Navarro Jr., L.A., Chilkoti, A., and Zauscher, S. (2017). Highmolecular- weight polynucleotides by transferase-catalyzed living chaingrowth polycondensation. Angew Chem Int Ed 56, 6778–6782.CrossRefGoogle Scholar
  72. Tindall, K.R., and Kunkel, T.A. (1988). Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27, 6008–6013.CrossRefGoogle Scholar
  73. Toyoda, H., Yin, J., Mueller, S., Wimmer, E., and Cello, J. (2007). Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res 67, 2857–2864.CrossRefGoogle Scholar
  74. Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R., and Church, G.M. (2009). Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898.CrossRefGoogle Scholar
  75. Wang, L., Jiang, S., Chen, C., He, W., Wu, X., Wang, F., Tong, T., Zou, X., Li, Z., Luo, J., et al. (2018a). Synthetic genomics: from DNA synthesis to genome design. Angew Chem Int Ed 57, 1748–1756.CrossRefGoogle Scholar
  76. Wang, Y., Shen, Y., Gu, Y., Zhu, S., and Yin, Y. (2018b). Genome writing: current progress and related applications. Genomics Proteomics BioInf 16, 10–16.CrossRefGoogle Scholar
  77. Wimmer, E., Mueller, S., Tumpey, T.M., and Taubenberger, J.K. (2009). Synthetic viruses: a new opportunity to understand and prevent viral disease. Nat Biotechnol 27, 1163–1172.CrossRefGoogle Scholar
  78. Wu, Y., Li, B.Z., Zhao, M., Mitchell, L.A., Xie, Z.X., Lin, Q.H., Wang, X., Xiao, W.H., Wang, Y., Zhou, X., et al. (2017). Bug mapping and fitness testing of chemically synthesized chromosome X. Science 355, eaaf4706.CrossRefGoogle Scholar
  79. Wu, Y., Zhu, R.Y., Mitchell, L.A., Ma, L., Liu, R., Zhao, M., Jia, B., Xu, H., Li, Y.X., Yang, Z.M., et al. (2018). In vitro DNA SCRaMbLE. Nat Commun 9, 1935.CrossRefGoogle Scholar
  80. Xie, Z.X., Li, B.Z., Mitchell, L.A., Wu, Y., Qi, X., Jin, Z., Jia, B., Wang, X., Zeng, B.X., Liu, H.M., et al. (2017). “Perfect” designer chromosome V and behavior of a ring derivative. Science 355, eaaf4704.CrossRefGoogle Scholar
  81. Yang, H. (1997). Ancient DNA from pleistocene fossils: Preservation, recovery, and utility of ancient genetic information for quaternary research. Quaternary Sci Rev 16, 1145–1161.CrossRefGoogle Scholar
  82. Zhang, F., and Voytas, D.F. (2018). Synthetic genomes engineered by SCRaMbLEing. Sci China Life Sci 61, 975–977.CrossRefGoogle Scholar
  83. Zhang, W., Zhao, G., Luo, Z., Lin, Y., Wang, L., Guo, Y., Wang, A., Jiang, S., Jiang, Q., Gong, J., et al. (2017a). Engineering the ribosomal DNA in a megabase synthetic chromosome. Science 355, eaaf3981.CrossRefGoogle Scholar
  84. Zhang, Y., Lamb, B.M., Feldman, A.W., Zhou, A.X., Lavergne, T., Li, L., and Romesberg, F.E. (2017b). A semisynthetic organism engineered for the stable expansion of the genetic alphabet. Proc Natl Acad Sci USA 114, 1317–1322.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhouqing Luo
    • 1
  • Qing Yang
    • 1
    • 2
  • Binan Geng
    • 1
    • 2
  • Shuangying Jiang
    • 1
  • Shihui Yang
    • 2
  • Xiaozheng Li
    • 3
  • Yizhi Cai
    • 1
    • 4
  • Junbiao Dai
    • 1
    • 3
  1. 1.Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life SciencesHubei UniversityWuhanChina
  3. 3.College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
  4. 4.College Manchester Institute of BiotechnologyUniversity of ManchesterManchesterUK

Personalised recommendations