Advertisement

Science China Life Sciences

, Volume 61, Issue 11, pp 1428–1431 | Cite as

The abuse of anesthetic propofol: associated with cognitive impairment

  • Weili ZhuEmail author
  • Wen Zhang
  • Jiali Li
  • Zengbo Ding
  • Yingjie Huang
  • Lin LuEmail author
Insight
  • 18 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This perspective review was supported by the National Key Research and Development Program of China (2017YFC0803607), National Natural Science Foundation of China (81371489, 31500864), and China Scholarship Council (201606015059).

References

  1. Freire, C.M.M., Braz, M.G., Marcondes, J.P.C., Arruda, N.M., Braz, J.R.C., Rainho, C.A., Braz, L.G., and Salvadori, D.M.F. (2018). Expression and promoter methylation status of two DNA repair genes in leukocytes from patients undergoing propofol or isoflurane anaesthesia. Mutagenesis 33, 147–152.CrossRefPubMedGoogle Scholar
  2. Gonzales, E.L.T., Yang, S.M., Choi, C.S., Mabunga, D.F.N., Kim, H.J., Cheong, J.H., Ryu, J.H., Koo, B.N., and Shin, C.Y. (2015). Repeated neonatal propofol administration induces sex-dependent long-term impairments on spatial and recognition memory in rats. Biomolecules Therapeutics 23, 251–260.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Han, Y., and Lu, L. (2016). The other face of the nucleus accumbens: aversion. Neurosci Bull 32, 569–571.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Hu, X., Wang, T., and Jin, F. (2016). Alzheimer’s disease and gut microbiota. Sci China Life Sci 59, 1006–1023.CrossRefPubMedGoogle Scholar
  5. Kingston, S., Mao, L., Yang, L., Arora, A., Fibuch, E.E., and Wang, J.Q. (2006). Propofol inhibits phosphorylation of N-methyl-D-aspartate receptor NR1 subunits in neurons. Anesthesiology 104, 763–769.CrossRefPubMedGoogle Scholar
  6. Pain, L., Gobaille, S., Schleef, C., Aunis, D., and Oberling, P. (2002). In vivo dopamine measurements in the nucleus accumbens after nonanesthetic and anesthetic doses of propofol in rats. Anesth Analg 95, 915–919, table of contents.PubMedGoogle Scholar
  7. Paredes, S., Cortínez, L., Contreras, V., and Silbert, B. (2016). Postoperative cognitive dysfunction at 3 months in adults after non-cardiac surgery: a qualitative systematic review. Acta Anaesthesiol Scand 60, 1043–1058.CrossRefPubMedGoogle Scholar
  8. Qin, J., Zhang, X., Wang, Z., Li, J., Zhang, Z., Gao, L., Ren, H., Qian, M., and Du, B. (2017). Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. Sci China Life Sci 60, 189–201.CrossRefPubMedGoogle Scholar
  9. Sinner, B., and Graf, B.M. (2008). Ketamine. Handb Exp Pharmacol 182, 313–333.CrossRefGoogle Scholar
  10. Vonmoos, M., Hulka, L.M., Preller, K.H., Minder, F., Baumgartner, M.R., and Quednow, B.B. (2014). Cognitive impairment in cocaine users is drug-induced but partially reversible: evidence from a longitudinal study. Neuropsychopharmacology 39, 2200–2210.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Wang, B., Yang, X., Sun, A., Xu, L., Wang, S., Lin, W., Lai, M., Zhu, H., Zhou, W., and Lian, Q. (2016). Extracellular signal-regulated kinase in nucleus accumbens mediates propofol self-administration in rats. Neurosci Bull 32, 531–537.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Wang, X., Yang, Y., Zhou, X., Wu, J., Li, J., Jiang, X., Qu, Q., Ou, C., Liu, L., and Zhou, S. (2011). Propofol pretreatment increases antidepressant-like effects induced by acute administration of ketamine in rats receiving forced swimming test. Psychiatry Res 185, 248–253.CrossRefPubMedGoogle Scholar
  13. Wang, X.F., Zhao, T.Y., Su, R.B., Wu, N., and Li, J. (2016). Agmatine prevents adaptation of the hippocampal glutamate system in chronic morphine-treated rats. Neurosci Bull 32, 523–530.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Wang, Y., Han, S., Han, R., Su, Y., and Li, J. (2017). Propofol-induced downregulation of NR2B membrane translocation in hippocampus and spatial memory deficits of neonatal mice. Brain Behav 7, e00734.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Wu, B., Lin, W., Wang, H., Abdullah, T., Wang, B., Su, Y., Ge, R.S., and Lian, Q. (2018). Glucocorticoid receptor in rat nucleus accumbens: Its roles in propofol addictions. NeuroSci Lett 662, 115–121.CrossRefPubMedGoogle Scholar
  16. Xiong, M., Li, J., Ye, J.H., and Zhang, C. (2011). Upregulation of DeltaFosB by propofol in rat nucleus accumbens. Anesthesia Analgesia 113, 259–264.CrossRefPubMedGoogle Scholar
  17. Yang, N., Li, L., Li, Z., Ni, C., Cao, Y., Liu, T., Tian, M., Chui, D., and Guo, X. (2017). Protective effect of dapsone on cognitive impairment induced by propofol involves hippocampal autophagy. NeuroSci Lett 649, 85–92.CrossRefPubMedGoogle Scholar
  18. Yuan, K., Han, Y., Hashimoto, K., and Lu, L. (2016). On the eve of upgrading antidepressants: (R)-ketamine and its metabolites. Neurosci Bull 32, 565–568.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Yuan, T.F., and Shan, C. (2014). “Glial inhibition” of memory in Alzheimer’s disease. Sci China Life Sci 57, 1238–1240.CrossRefPubMedGoogle Scholar
  20. Zhang, X.H., and Poo, M.M. (2010). Progress in neural plasticity. Sci China Life Sci 53, 322–329.CrossRefPubMedGoogle Scholar
  21. Zhao, L., Zhu, Y., Wang, D., Chen, M., Gao, P., Xiao, W., Rao, G., Wang, X., Jin, H., Xu, L., et al. (2010). Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy 6, 386–394.CrossRefPubMedGoogle Scholar
  22. Zhou, J., Wang, F., Zhang, J., Li, J., Ma, L., Dong, T., and Zhuang, Z. (2018). The interplay of BDNF-TrkB with NMDA receptor in propofol-induced cognition dysfunction. BMC Anesthesiol 18, 35.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Zhu, W., Ding, Z., Zhang, Y., Shi, J., Hashimoto, K., and Lu, L. (2016). Risks associated with misuse of ketamine as a rapid-acting antidepressant. Neurosci Bull 32, 557–564.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Zhu, X., Hao, X., Luo, J., Min, S., Xie, F., and Zhang, F. (2015). Propofol inhibits inflammatory cytokine-mediated glutamate uptake dysfunction to alleviate learning/memory impairment in depressed rats undergoing electroconvulsive shock. Brain Res 1595, 101–109.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute on Drug DependencePeking UniversityBeijingChina
  2. 2.Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental HealthPeking UniversityBeijingChina

Personalised recommendations