Advertisement

Chitosan/LiCl composite scaffolds promote skin regeneration in full-thickness loss

  • Jifang Yuan
  • Qian Hou
  • Deyun Chen
  • Lingzhi Zhong
  • Xin Dai
  • Ziying Zhu
  • Meirong LiEmail author
  • Xiaobing FuEmail author
Research Paper
  • 7 Downloads

Abstract

Small molecules loaded into biological materials present a promising strategy for stimulating endogenous repair mechanisms for in situ skin regeneration. Lithium can modulate various biologic processes, promoting proliferation, angiogenesis, and decreasing inflammation. However, its role in skin repair is rarely reported. In this study, we loaded lithium chloride (LiCl) into the chitosan (CHI) hydrogel and develop a sterile and biocompatible sponge scaffold through freeze-drying. In-vitro assessment demonstrated that the CHI-LiCl composite scaffolds (CLiS) possessed favorable cytocompatibility, swelling and biodegradation. We created full-thickness skin wounds in male C57BL/c mice to evaluate the healing capacity of CLiS. Compared with the wounds of control and CHI scaffold (CS) groups, the wounds in the CLiS-treated group showed reduced inflammation, improved angiogenesis, accelerated re-epithelialization, sustained high expression of β-catenin with a small amount of regenerated hair follicles. Therefore, CLiS may be a promising therapeutic dressing for skin wound repair and regeneration.

Keywords

wound healing chitosan LiCl small molecule skin regeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research & Development Program of China (2017YFC1104701 and 2017YFC1103300), the National Natural Science Foundation of China (81721092 and 81501669), and the Key Research and Development Project of Hainan (ZDYF2016135 and ZDYF2017095).

References

  1. Amini-Nik, S., Cambridge, E., Yu, W., Guo, A., Whetstone, H., Nadesan, P., Poon, R., Hinz, B., and Alman, B.A. (2014). β-Catenin-regulated myeloid cell adhesion and migration determine wound healing. J Clin Invest 124, 2599–2610.CrossRefGoogle Scholar
  2. Bonani, W., Motta, A., Migliaresi, C., and Tan, W. (2012). Biomolecule gradient in micropatterned nanofibrous scaffold for spatiotemporal release. Langmuir 28, 13675–13687.CrossRefGoogle Scholar
  3. Cao, Q., Karthikeyan, A., Dheen, S.T., Kaur, C., and Ling, E.A. (2017). Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling. PLoS ONE 12, e0186764.CrossRefGoogle Scholar
  4. Chen, D., Jarrell, A., Guo, C., Lang, R., and Atit, R. (2012). Dermal b-catenin activity in response to epidermal Wnt ligands is required for fibroblast proliferation and hair follicle initiation. Development 139, 1522–1533.CrossRefGoogle Scholar
  5. Chen, X., Zhang, M., Wang, X., Chen, Y., Yan, Y., Zhang, L., and Zhang, L. (2017). Peptide-modified chitosan hydrogels promote skin wound healing by enhancing wound angiogenesis and inhibiting inflammation. Am J Transl Res 9, 2352–2362.Google Scholar
  6. Chiu, C.T., Wang, Z., Hunsberger, J.G., and Chuang, D.M. (2013). Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65, 105–142.CrossRefGoogle Scholar
  7. Chow, A., Stuckey, D.J., Kidher, E., Rocco, M., Jabbour, R.J., Mansfield, C.A., Darzi, A., Harding, S.E., Stevens, M.M., and Athanasiou, T. (2017). Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Rep 9, 1415–1422.CrossRefGoogle Scholar
  8. Comblain, F., Rocasalbas, G., Gauthier, S., and Henrotin, Y. (2017). Chitosan: a promising polymer for cartilage repair and viscosupplementation. Bio-Med Mater Eng 28, S209–S215.CrossRefGoogle Scholar
  9. Dell’Osso, L., Del Grande, C., Gesi, C., Carmassi, C., and Musetti, L. (2016). A new look at an old drug: neuroprotective effects and therapeutic potentials of lithium salts. Neuropsychiat Disease Treatment 12, 1687–1703.CrossRefGoogle Scholar
  10. Dong, L., Hao, H., Liu, J., Ti, D., Tong, C., Hou, Q., Li, M., Zheng, J., Liu, G., Fu, X., et al. (2017a). A conditioned medium of umbilical cord mesenchymal stem cells overexpressing Wnt7a promotes wound repair and regeneration of hair follicles in mice. Stem Cells Int 2017, 1–13.CrossRefGoogle Scholar
  11. Dong, L., Hao, H., Liu, J., Tong, C., Ti, D., Chen, D., Chen, L., Li, M., Liu, H., Fu, X., et al. (2017b). Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system. J Tissue Eng Regen Med 11, 1479–1489.CrossRefGoogle Scholar
  12. Fathi, M., Sahandi Zangabad, P., Majidi, S., Barar, J., Erfan-Niya, H., and Omidi, Y. (2017). Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts 7, 269–277.CrossRefGoogle Scholar
  13. Fernandes-Silva, S., Moreira-Silva, J., Silva, T.H., Perez-Martin, R.I., Sotelo, C.G., Mano, J.F., Duarte, A.R.C., and Reis, R.L. (2013). Porous hydrogels from shark skin collagen crosslinked under dense carbon dioxide atmosphere. Macromol Biosci 13, 1621–1631.CrossRefGoogle Scholar
  14. Freeman, M.P., and Freeman, S.A. (2006). Lithium: clinical considerations in internal medicine. Am J Med 119, 478–481.CrossRefGoogle Scholar
  15. Fuchs, E. (1990). Epidermal differentiation: the bare essentials. J Cell Biol 111, 2807–2814.CrossRefGoogle Scholar
  16. Grellner, W., Georg, T., and Wilske, J. (2000). Quantitative analysis of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in human skin wounds. Forensic Sci Int 113, 251–264.CrossRefGoogle Scholar
  17. Guo, R., Xu, S., Ma, L., Huang, A., and Gao, C. (2010). Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model. Biomaterials 31, 7308–7320.CrossRefGoogle Scholar
  18. Haj, J., Haj Khalil, T., Falah, M., Zussman, E., and Srouji, S. (2017). An ECM-mimicking, mesenchymal stem cell-embedded hybrid scaffold for bone regeneration. Biomed Res Int 2017, 1–12.CrossRefGoogle Scholar
  19. Hao, H., Wen, L., Li, J., Wang, Y., Ni, B., Wang, R., Wang, X., Sun, M., Fan, H., and Mao, X. (2015). LiCl inhibits PRRSV infection by enhancing Wnt/β-catenin pathway and suppressing inflammatory responses. Antiviral Res 117, 99–109.CrossRefGoogle Scholar
  20. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001). β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545.CrossRefGoogle Scholar
  21. Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P.T., Nair, S.V., and Tamura, H. (2011). Biomaterials based on chitin and chitosan in wound dressing applications. Biotech Adv 29, 322–337.CrossRefGoogle Scholar
  22. Kathju, S., Gallo, P.H., and Satish, L. (2012). Scarless integumentary wound healing in the mammalian fetus: molecular basis and therapeutic implications. Birth Defects Res C 96, 223–236.CrossRefGoogle Scholar
  23. Kathuria, N., Tripathi, A., Kar, K.K., and Kumar, A. (2009). Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater 5, 406–418.CrossRefGoogle Scholar
  24. Kumar, P.T.S., Lakshmanan, V.K., Anilkumar, T.V., Ramya, C., Reshmi, P., Unnikrishnan, A.G., Nair, S.V., and Jayakumar, R. (2012). Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation. ACS Appl Mater Interfaces 4, 2618–2629.CrossRefGoogle Scholar
  25. Lee, S.H., Kim, M.Y., Kim, H.Y., Lee, Y.M., Kim, H., Nam, K.A., Roh, M. R., Min, D.S., Chung, K.Y., and Choi, K.Y. (2015). The dishevelledbinding protein CXXC5 negatively regulates cutaneous wound healing. J Exp Med 212, 1061–1080.CrossRefGoogle Scholar
  26. Leeds, P.R., Yu, F., Wang, Z., Chiu, C.T., Zhang, Y., Leng, Y., Linares, G. R., and Chuang, D.M. (2014). A new avenue for lithium: intervention in traumatic brain injury. ACS Chem Neurosci 5, 422–433.CrossRefGoogle Scholar
  27. Lei, H., Wang, Y., Zhang, T., Chang, L., Wu, Y., and Lai, Y. (2017). TLR3 activation induces S100A7 to regulate keratinocyte differentiation after skin injury. Sci China Life Sci 60, 158–167.CrossRefGoogle Scholar
  28. Li, M., Zhao, Y., Hao, H., Han, W., and Fu, X. (2017a). Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev 36, 32–41.CrossRefGoogle Scholar
  29. Li, X., He, X.T., Yin, Y., Wu, R.X., Tian, B.M., and Chen, F.M. (2017b). Administration of signalling molecules dictates stem cell homing for in situ regeneration. J Cell Mol Med 21, 3162–3177.CrossRefGoogle Scholar
  30. Lian, X., Selekman, J., Bao, X., Hsiao, C., Zhu, K., and Palecek, S.P. (2013). A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS ONE 8, e60016.CrossRefGoogle Scholar
  31. Lin, T., and Wu, S. (2015). Reprogramming with small molecules instead of exogenous transcription factors. Stem Cells Int 2015, 1–11.CrossRefGoogle Scholar
  32. Lin, Y.H., Fu, K.Y., Hong, P.D., Ma, H., Liou, N.H., Ma, K.H., Liu, J.C., Huang, K.L., Dai, L.G., Chang, S.C., et al. (2013). The effects of microenvironment on wound healing by keratinocytes derived from mesenchymal stem cells. Ann Plastic Surgery 71, 1.CrossRefGoogle Scholar
  33. Makoukji, J., Belle, M., Meffre, D., Stassart, R., Grenier, J., Shackleford, G.G., Fledrich, R., Fonte, C., Branchu, J., Goulard, M., et al. (2012). Lithium enhances remyelination of peripheral nerves. Proc Natl Acad Sci USA 109, 3973–3978.CrossRefGoogle Scholar
  34. Nasser, W., Amitai-Lange, A., Soteriou, D., Hanna, R., Tiosano, B., Fuchs, Y., and Shalom-Feuerstein, R. (2018). Corneal-committed cells restore the stem cell pool and tissue boundary following injury. Cell Rep 22, 323–331.CrossRefGoogle Scholar
  35. Oryan, A., and Sahvieh, S. (2017). Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int J Biol Macromol 104, 1003–1011.CrossRefGoogle Scholar
  36. Ouyang, Q.Q., Zhao, S., Li, S.D., and Song, C. (2017). Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of Alzheimer’s Disease. Mar Drugs 15, 322.CrossRefGoogle Scholar
  37. Panich, U., Sittithumcharee, G., Rathviboon, N., and Jirawatnotai, S. (2016). Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging. Stem Cells Int 2016, 1–14.CrossRefGoogle Scholar
  38. Park, G., Yoon, B.S., Kim, Y.S., Choi, S.C., Moon, J.H., Kwon, S., Hwang, J., Yun, W., Kim, J.H., Park, C.Y., et al. (2015). Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials 54, 201–212.CrossRefGoogle Scholar
  39. Park, S.N., Park, J.C., Kim, H.O., Song, M.J., and Suh, H. (2002). Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials 23, 1205–1212.CrossRefGoogle Scholar
  40. Patrulea, V., Ostafe, V., Borchard, G., and Jordan, O. (2015). Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm 97, 417–426.CrossRefGoogle Scholar
  41. Price, R.D., Berry, M.G., and Navsaria, H.A. (2007). Hyaluronic acid: the scientific and clinical evidence. J Plastic Reconstruct Aesthetic Surgery 60, 1110–1119.CrossRefGoogle Scholar
  42. Qi, W., Yang, C., Dai, Z., Che, D., Feng, J., Mao, Y., Cheng, R., Wang, Z., He, X., Zhou, T., et al. (2015). High levels of pigment epitheliumderived factor in diabetes impair wound healing through suppression of Wnt signaling. Diabetes 64, 1407–1419.CrossRefGoogle Scholar
  43. Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D.A., and Quiñones-Olvera, L.F. (2015). Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015, 1–15.CrossRefGoogle Scholar
  44. Rognoni, E., Gomez, C., Pisco, A.O., Rawlins, E.L., Simons, B.D., Watt, F. M., and Driskell, R.R. (2016). Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 143, 2522–2535.CrossRefGoogle Scholar
  45. Schoellhammer, C.M., Blankschtein, D., and Langer, R. (2014). Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 11, 393–407.CrossRefGoogle Scholar
  46. Selekman, J.A., Lian, X., and Palecek, S.P. (2016). Generation of epithelial cell populations from human pluripotent stem cells using a small-Molecule inhibitor of Src family kinases. Methods Mol Biol 1307, 319–327.CrossRefGoogle Scholar
  47. Stepniewski, M., Martynkiewicz, J., and Gosk, J. (2017). Chitosan and its composites: properties for use in bone substitution. Polim Med 47, 49–53.CrossRefGoogle Scholar
  48. Trébol, J., Georgiev-Hristov, T., Vega-Clemente, L., García-Gómez, I., Carabias-Orgaz, A., García-Arranz, M., and García-Olmo, D. (2018). Rat model of anal sphincter injury and two approaches for stem cell administration. World J Stem Cells 10, 1–14.CrossRefGoogle Scholar
  49. Wada, A. (2009). Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci 110, 14–28.CrossRefGoogle Scholar
  50. Wang, T., Zhao, J., Zhang, J., Mei, J., Shao, M., Pan, Y., Yang, W., Jiang, Y., Liu, F., and Jia, W. (2018). Heparan sulfate inhibits inflammation and improves wound healing by downregulating the NLR family pyrin domain containing 3 (NLRP3) inflammasome in diabetic rats. J Diabetes 10, 556–563.CrossRefGoogle Scholar
  51. Wang, W., Li, P., Li, W., Jiang, J., Cui, Y., Li, S., and Wang, Z. (2017). Osteopontin activates mesenchymal stem cells to repair skin wound. PLoS ONE 12, e0185346.CrossRefGoogle Scholar
  52. Watt, F.M. (2014). Mammalian skin cell biology: at the interface between laboratory and clinic. Science 346, 937–940.CrossRefGoogle Scholar
  53. Xu, J., Wu, W., Zhang, L., Dorset-Martin, W., Morris, M.W., Mitchell, M. E., and Liechty, K.W. (2012). The role of microRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes 61, 2906–2912.CrossRefGoogle Scholar
  54. Yucel Falco, C., Falkman, P., Risbo, J., Cárdenas, M., and Medronho, B. (2017). Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172, 175–183.CrossRefGoogle Scholar
  55. Zhang, D.L., Gu, L.J., Liu, L., Wang, C.Y., Sun, B.S., Li, Z., and Sung, C. K. (2009). Effect of Wnt signaling pathway on wound healing. Biochem Biophys Res Commun 378, 149–151.CrossRefGoogle Scholar
  56. Zhang, M., Lin, Y.H., Sun, Y.J., Zhu, S., Zheng, J., Liu, K., Cao, N., Li, K., Huang, Y., and Ding, S. (2016). Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation. Cell Stem Cell 18, 653–667.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jifang Yuan
    • 1
    • 2
  • Qian Hou
    • 1
  • Deyun Chen
    • 1
  • Lingzhi Zhong
    • 1
  • Xin Dai
    • 2
  • Ziying Zhu
    • 1
  • Meirong Li
    • 1
    • 3
    Email author
  • Xiaobing Fu
    • 1
    Email author
  1. 1.Wound Healing and Cell Biology Laboratory, Institute of Basic Medical ScienceChinese PLA General HospitalBeijingChina
  2. 2.Laboratory Animal CenterChinese PLA General HospitalBeijingChina
  3. 3.Trauma Treatment Center, Central LaboratoryChinese PLA General Hospital Hainan BranchSanyaChina

Personalised recommendations