Advertisement

Science China Life Sciences

, Volume 61, Issue 11, pp 1312–1319 | Cite as

Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy

  • Xiaojun Xu
  • Yanhong Xue
  • Buyun Tian
  • Fengping Feng
  • Lusheng Gu
  • Weixing Li
  • Wei JiEmail author
  • Tao XuEmail author
Research Paper From CAS & CAE Members

Abstract

Remarkable progress in correlative light and electron cryo-microscopy (cryo-CLEM) has been made in the past decade. A crucial component for cryo-CLEM is a dedicated cryo-fluorescence microscope (cryo-FM). Here, we describe an ultra-stable super-resolution cryo-FM that exhibits excellent thermal and mechanical stability. The temperature fluctuations in 10 h are less than 0.06 K, and the mechanical drift over 5 h is less than 200 nm in three dimensions. We have demonstrated the super-resolution imaging capability of this system (average single molecule localization accuracy of ∼13.0 nm). The results suggest that our system is particularly suitable for long-term observations, such as single molecule localization microscopy (SMLM) and cryogenic super-resolution correlative light and electron microscopy (csCLEM).

Keywords

cryogenic cryostat super-resolution Cryo-FM Cryo-PALM csCLEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0500203, 2016YFA0502400, 2017YFA0504700, 2017YFA0505300), the National Natural Science Foundation of China (31661143041, 31127901) and Joint Program between Chinese Academy of Sciences and Peking University.

Supplementary material

11427_2018_9380_MOESM1_ESM.docx (295 kb)
Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy

References

  1. Bellare, J.R., Davis, H.T., Scriven, L.E., and Talmon, Y. (1988). Controlled environment vitrification system: an improved sample preparation technique. J Elec Microsc Tech 10, 87–111.CrossRefGoogle Scholar
  2. Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645.CrossRefPubMedGoogle Scholar
  3. Bleck, C.K.E., Merz, A., Gutierrez, M.G., Walther, P., Dubochet, J., Zuber, B., and Griffiths, G. (2010). Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J Microscopy 237, 23–38.CrossRefGoogle Scholar
  4. Briegel, A., Chen, S., Koster, A.J., Plitzko, J.M., Schwartz, C.L., and Jensen, G.J. (2010). Correlated light and electron cryo-microscopy. Methods Enzymol 481, 317–341.CrossRefPubMedGoogle Scholar
  5. Chang, H., Zhang, M., Ji, W., Chen, J., Zhang, Y., Liu, B., Lu, J., Zhang, J., Xu, P., and Xu, T. (2012). A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA 109, 4455–4460.CrossRefPubMedGoogle Scholar
  6. Chang, Y.W., Chen, S., Tocheva, E.I., Treuner-Lange, A., Löbach, S., Søgaard-Andersen, L., and Jensen, G.J. (2014). Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11, 737–739.CrossRefPubMedPubMedCentralGoogle Scholar
  7. de Boer, P., Hoogenboom, J.P., and Giepmans, B.N. (2015). Correlated light and electron microscopy: ultrastructure lights up! Nat Methods 12, 503–513.CrossRefPubMedGoogle Scholar
  8. Dubochet, J. (2012). Cryo-EM-the first thirty years. J Microscopy 245, 221–224.CrossRefGoogle Scholar
  9. Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., and Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quart Rev Biophys 21, 129–228.CrossRefGoogle Scholar
  10. Glaeser, R.M. (2016). How good can cryo-EM become? Nat Methods 13, 28–32.CrossRefPubMedGoogle Scholar
  11. Hess, S.T., Girirajan, T.P.K., and Mason, M.D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91, 4258–4272.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hirschfeld, V., and Hubner, C.G. (2010). A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K. Rev Sci Instrum 81, 113705.CrossRefPubMedGoogle Scholar
  13. Huang, B., Wang, W., Bates, M., and Zhuang, X. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hurbain, I., and Sachse, M. (2011). The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 103, 405–420.CrossRefPubMedGoogle Scholar
  15. Hussels, M., Konrad, A., and Brecht, M. (2012). Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures. Rev Sci Instrum 83, 123–706.CrossRefGoogle Scholar
  16. Kaufmann, R., Hagen, C., and Grünewald, K. (2014). Fluorescence cryomicroscopy: current challenges and prospects. Curr Opin Chem Biol 20, 86–91.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kaufmann, R., Schellenberger, P., Seiradake, E., Dobbie, I.M., Jones, E.Y., Davis, I., Hagen, C., and Grünewald, K. (2014). Super-resolution microscopy using standard fluorescent proteins in intact cells under cryoconditions. Nano Lett 14, 4171–4175.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kozankiewicz, B., and Orrit, M. (2014). Single-molecule photophysics, from cryogenic to ambient conditions. Chem Soc Rev 43, 1029–1043.CrossRefPubMedGoogle Scholar
  19. Le Gros, M.A., McDermott, G., Uchida, M., Knoechel, C.G., and Larabell, C.A. (2009). High-aperture cryogenic light microscopy. J Microscopy 235, 1–8.CrossRefGoogle Scholar
  20. Li, W., Stein, S.C., Gregor, I., and Enderlein, J. (2015). Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Opt Express 23, 3770–3783.CrossRefPubMedGoogle Scholar
  21. Liu, B., Xue, Y., Zhao, W., Chen, Y., Fan, C., Gu, L., Zhang, Y., Zhang, X., Sun, L., Huang, X., et al. (2015). Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 5, 13017.CrossRefPubMedPubMedCentralGoogle Scholar
  22. McDonald, K.L. (2009). A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J Microscopy 235, 273–281.CrossRefGoogle Scholar
  23. Müller-Reichert, T., and Verkade, P. (2014). Preface. Correlative light and electron microscopy II. Methods Cell Biol 124, xvii–xviii.CrossRefPubMedGoogle Scholar
  24. Peddie, C.J., Blight, K., Wilson, E., Melia, C., Marrison, J., Carzaniga, R., Domart, M.C., O’Toole, P., Larijani, B., and Collinson, L.M. (2014). Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy 143, 3–14.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Perkovic, M., Kunz, M., Endesfelder, U., Bunse, S., Wigge, C., Yu, Z., Hodirnau, V.V., Scheffer, M.P., Seybert, A., Malkusch, S., et al. (2014). Correlative light-and electron microscopy with chemical tags. J Struct Biol 186, 205–213.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Rodriguez, J.A., Ivanova, M.I., Sawaya, M.R., Cascio, D., Reyes, F.E., Shi, D., Sangwan, S., Guenther, E.L., Johnson, L.M., Zhang, M., et al. (2015). Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rust, M.J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3, 793–796.CrossRefGoogle Scholar
  28. Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W., and Plitzko, J.M. (2007). Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160, 135–145.CrossRefPubMedGoogle Scholar
  29. Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R., and Nicastro, D. (2007). Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227, 98–109.CrossRefPubMedGoogle Scholar
  30. Wang, S., Li, S., Ji, G., Huang, X., and Sun, F. (2017). Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophys Rep 3, 8–16.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Weinhausen, B., Saldanha, O., Wilke, R.N., Dammann, C., Priebe, M., Burghammer, M., Sprung, M., and Koster, S. (2014). Scanning X-ray nanodiffraction on living eukaryotic cells in microfluidic environments. Phys Rev Lett 112, 202–209.CrossRefGoogle Scholar
  32. Weisenburger, S., Jing, B., Renn, A., and Sandoghdar, V. (2013). Cryogenic localization of single molecules with angstrom precision. Nanoimag Nanospectrosc 8815, 27.Google Scholar
  33. Wolff, G., Hagen, C., Grünewald, K., and Kaufmann, R. (2016). Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 108, 245–258.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Zhang, Y.D., Gu, L.S., Chang, H., Ji, W., Chen, Y., Zhang, M.S., Yang, L., Liu, B., Chen, L.Y., and Xu, T. (2013). Ultrafast, accurate, and robust localization of anisotropic dipoles. Protein Cell 4, 598–606.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zondervan, R., Kulzer, F., Kol’chenk, M.A., and Orrit, M. (2004). Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels. J Phys Chem A 108, 1657–1665.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojun Xu
    • 1
    • 2
  • Yanhong Xue
    • 2
  • Buyun Tian
    • 4
  • Fengping Feng
    • 2
  • Lusheng Gu
    • 3
  • Weixing Li
    • 3
  • Wei Ji
    • 3
    • 4
    Email author
  • Tao Xu
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  3. 3.Center for Biological Instrument Development, Core Facility for Protein Research, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  4. 4.College of Life ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations