Advertisement

Science China Life Sciences

, Volume 61, Issue 12, pp 1474–1476 | Cite as

Profile of Dr. Zhigang Tian

Profile From CAS & CAE Members
  • 9 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Constantinides, M.G., McDonald, B.D., Verhoef, P.A., and Bendelac, A. (2014). A committed precursor to innate lymphoid cells. Nature 508, 397–401.CrossRefGoogle Scholar
  2. Dadi, S., Chhangawala, S., Whitlock, B.M., Franklin, R.A., Luo, C.T., Oh, S.A., Toure, A., Pritykin, Y., Huse, M., Leslie, C.S., et al. (2016). Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164, 365–377.CrossRefGoogle Scholar
  3. Fan, X., and Rudensky, A.Y. (2016). Hallmarks of tissue-resident lymphocytes. Cell 164, 1198–1211.CrossRefGoogle Scholar
  4. Fu, B., Zhou, Y., Ni, X., Tong, X., Xu, X., Dong, Z., Sun, R., Tian, Z., and Wei, H. (2017). Natural killer cells promote fetal development through the secretion of growth-promoting factors. Immunity 47, 1100–1113.e6.CrossRefGoogle Scholar
  5. Gao, B. (2010). Natural killer group 2 member D, its ligands, and liver disease: good or bad? Hepatology 51, 8–11.CrossRefGoogle Scholar
  6. Gao, B., Jeong, W.I., and Tian, Z. (2008). Liver: An organ with predominant innate immunity. Hepatology 47, 729–736.CrossRefGoogle Scholar
  7. Gasteiger, G., and Rudensky, A.Y. (2014). Interactions between innate and adaptive lymphocytes. Nat Rev Immunol 14, 631–639.CrossRefGoogle Scholar
  8. Hou, X., Zhou, R., Wei, H., Sun, R., and Tian, Z. (2009). NKG2D-retinoic acid early inducible-1 recognition between natural killer cells and Kupffer cells in a novel murine natural killer cell-dependent fulminant hepatitis. Hepatology 49, 940–949.CrossRefGoogle Scholar
  9. Jin, Z., Sun, R., Wei, H., Gao, X., Chen, Y., and Tian, Z. (2011). Accelerated liver fibrosis in hepatitis B virus transgenic mice: involvement of natural killer T cells. Hepatology 53, 219–229.CrossRefGoogle Scholar
  10. Li, F., Wei, H., Wei, H., Gao, Y., Xu, L., Yin, W., Sun, R., and Tian, Z. (2013). Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 144, 392–401.CrossRefGoogle Scholar
  11. McHedlidze, T., Waldner, M., Zopf, S., Walker, J., Rankin, A.L., Schuchmann, M., Voehringer, D., McKenzie, A.N.J., Neurath, M.F., Pflanz, S., et al. (2013). Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371.CrossRefGoogle Scholar
  12. Peng, H., Jiang, X., Chen, Y., Sojka, D.K., Wei, H., Gao, X., Sun, R., Yokoyama, W.M., and Tian, Z. (2013). Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 123, 1444–1456.CrossRefGoogle Scholar
  13. Peng, H., and Tian, Z. (2015). Re-examining the origin and function of liver-resident NK cells. Trends Immunol 36, 293–299.CrossRefGoogle Scholar
  14. Peng, H., and Tian, Z. (2017). Diversity of tissue-resident NK cells. Semin Immunol 31, 3–10.CrossRefGoogle Scholar
  15. Sun, C., Fu, B., Gao, Y., Liao, X., Sun, R., Tian, Z., and Wei, H. (2012). TGF-beta1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 8, e1002594.CrossRefGoogle Scholar
  16. Tang, L., Peng, H., Zhou, J., Chen, Y., Wei, H., Sun, R., Yokoyama, W.M., and Tian, Z. (2016). Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J Autoimmunity 67, 29–35.CrossRefGoogle Scholar
  17. Wang, X., Sun, R., Wei, H., and Tian, Z. (2013). High-mobility group box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: Interaction of γδ T cells with macrophages. Hepatology 57, 373–384.CrossRefGoogle Scholar
  18. Wu, P., Wu, D., Ni, C., Ye, J., Chen, W., Hu, G., Wang, Z., Wang, C., Zhang, Z., Xia, W., et al. (2014). γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800.CrossRefGoogle Scholar
  19. Zhang, Q., Bi, J., Zheng, X., Chen, Y., Wang, H., Wu, W., Wang, Z., Wu, Q., Peng, H., Wei, H., et al. (2018). Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 19, 723–732.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Personalised recommendations