Science China Life Sciences

, Volume 62, Issue 1, pp 126–139 | Cite as

Anti-diabetic vanadyl complexes reduced Alzheimer’s disease pathology independent of amyloid plaque deposition

  • Yaqiong Dong
  • Tessandra Stewart
  • Yue Zhang
  • Min Shi
  • Chang Tan
  • Xue Li
  • Lan Yuan
  • Aanchal Mehrotra
  • Jing ZhangEmail author
  • Xiaoda YangEmail author
Research Paper


Association of Alzheimer’s disease (AD) with cerebral glucose hypometabolism, likely due to impairments of insulin signaling, has been reported recently, with encouraging results when additional insulin is provided to AD patients. Here, we tested the potential effects of the anti-diabetic vanadium, vanadyl (IV) acetylacetonate (VAC), on AD in vitro and in vivo models. The experimental results showed that VAC at sub-micromolar concentrations improved the viability of neural cells with or without increased β-amyloid (Aβ) burden; and in APP/PS1 transgenic mice, VAC treatment (0.1 mmol kg−1 d−1) preserved cognitive function and attenuated neuron loss, but did not reduce brain Aβ plaques. Further studies revealed that VAC attenuated Aβ pathogenesis by (i) activation of the PPARγ-AMPK signal transduction pathway, leading to improved glucose and energy metabolism; (ii) up-regulation of the expression of glucose-regulated protein 75 (Grp75), thus suppressing p53-mediated neuronal apoptosis under Aβ-related stresses; and (iii) decreasing toxic soluble Aβ peptides. Overall, our work suggested that vanadyl complexes may have great potential for effective therapeutic treatment of AD.


Alzheimer’s disease vanadyl (IV) acetylacetonate neuroprotection Aβ oligomerization PPARγ-AMPK Grp75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Dr. Zengqiang Yuan at the Institute of Biophysics, Chinese Academy of Sciences for providing the three SH-SY5Y cells and kind assistances in cell culture. This work was supported by National Natural Science Foundation of China (21571006, 21771010), Beijing Municipal Science & Technology Commission (A61120-01) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA 12040101).


  1. Adam, A.M.A., Naglah, A.M., Al-Omar, M.A., and Refat, M.S. (2017). Synthesis of a new insulin-mimetic anti-diabetic drug containing vitamin A and vanadium(IV) salt: chemico-biological characterizations. Int J Immunopathol Pharmacol 30, 272–281.CrossRefGoogle Scholar
  2. Albuquerque, M.S., Mahar, I., Davoli, M.A., Chabot, J.G., Mechawar, N., Quirion, R., and Krantic, S. (2015). Regional and sub-regional differences in hippocampal GABAergic neuronal vulnerability in the TgCRND8 mouse model of Alzheimer’s disease. Front Aging Neurosci 7, 30.CrossRefGoogle Scholar
  3. Aron, L., and Yankner, B.A. (2016). Neurodegenerative disorders: neural synchronization in Alzheimer’s disease. Nature 540, 207–208.CrossRefGoogle Scholar
  4. Arvanitakis, Z., Schneider, J.A., Wilson, R.S., Li, Y., Arnold, S.E., Wang, Z., and Bennett, D.A. (2006). Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67, 1960–1965.CrossRefGoogle Scholar
  5. Asih, P.R., Tegg, M.L., Sohrabi, H., Carruthers, M., Gandy, S.E., Saad, F., Verdile, G., Ittner, L.M., and Martins, R.N. (2017). Multiple mechanisms linking type 2 diabetes and Alzheimer’s disease: testosterone as a modifier. J Alzheimers Dis 59, 445–466.CrossRefGoogle Scholar
  6. Augustin, K., Khabbush, A., Williams, S., Eaton, S., Orford, M., Cross, J. H., Heales, S.J.R., Walker, M.C., and Williams, R.S.B. (2018). Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 17, 84–93.CrossRefGoogle Scholar
  7. Bauer, M., Goldstein, M., Christmann, M., Becker, H., Heylmann, D., and Kaina, B. (2011). Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci USA 108, 21105–21110.CrossRefGoogle Scholar
  8. Bishayee, A., Waghray, A., Patel, M.A., and Chatterjee, M. (2010). Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 294, 1–12.CrossRefGoogle Scholar
  9. Bomba, M., Ciavardelli, D., Silvestri, E., Canzoniero, L.M., Lattanzio, R., Chiappini, P., Piantelli, M., Di Ilio, C., Consoli, A., and Sensi, S.L. (2013). Exenatide promotes cognitive enhancement and positive brain metabolic changes in PS1-KI mice but has no effects in 3xTg-AD animals. Cell Death Dis 4, e612.CrossRefGoogle Scholar
  10. Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., Prada, C.M., Kim, G., Seekins, S., Yager, D., et al. (1996). Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17, 1005–1013.CrossRefGoogle Scholar
  11. Camilleri, A., Zarb, C., Caruana, M., Ostermeier, U., Ghio, S., Högen, T., Schmidt, F., Giese, A., and Vassallo, N. (2013). Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols. Biochim Biophys Acta 1828, 2532–2543.CrossRefGoogle Scholar
  12. Cardoso, S.M., Santana, I., Swerdlow, R.H., and Oliveira, C.R. (2004). Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. J Neurochem 89, 1417–1426.CrossRefGoogle Scholar
  13. Cascella, R., Evangelisti, E., Bigi, A., Becatti, M., Fiorillo, C., Stefani, M., Chiti, F., and Cecchi, C. (2017). Soluble oligomers require a ganglioside to trigger neuronal calcium overload. J Alzheimers Dis 60, 923–938.CrossRefGoogle Scholar
  14. Chen, Z., and Zhong, C. (2013). Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108, 21–43.CrossRefGoogle Scholar
  15. Cross, D.A.E., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789.CrossRefGoogle Scholar
  16. D’Cruz, O.J., and Uckun, F.M. (2002). Metvan: a novel oxovanadium(IV) complex with broad spectrum anticancer activity. Expert Opin Investig Drugs 11, 1829–1836.CrossRefGoogle Scholar
  17. De Felice, F.G. (2013). Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest 123, 531–539.CrossRefGoogle Scholar
  18. De Felice, F.G., and Ferreira, S.T. (2014). Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272.CrossRefGoogle Scholar
  19. Di Carlo, M., Giacomazza, D., Picone, P., Nuzzo, D., and San Biagio, P.L. (2012). Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res 46, 1327–1338.CrossRefGoogle Scholar
  20. Duyckaerts, C., Potier, M.C., and Delatour, B. (2008). Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115, 5–38.CrossRefGoogle Scholar
  21. Gao, Z., Zhang, C., Yu, S., Yang, X., and Wang, K. (2011). Vanadyl bisacetylacetonate protects β cells from palmitate-induced cell death through the unfolded protein response pathway. J Biol Inorg Chem 16, 789–798.CrossRefGoogle Scholar
  22. Glabe, C.G. (2006). Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27, 570–575.CrossRefGoogle Scholar
  23. Guo, W., and Yang, X. (2015). Vanadium regulates HSP60-induced IL-6 release from RAW264.7 cells in a dose-dependent manner. J Chin Pharm Sci 24, 28–33.Google Scholar
  24. Ha, H.J., Kang, D.W., Kim, H.M., Kang, J.M., Ann, J., Hyun, H.J., Lee, J. H., Kim, S.H., Kim, H., Choi, K., et al. (2018). Discovery of an orally bioavailable benzofuran analogue that serves as a β-amyloid aggregation inhibitor for the potential treatment of Alzheimer’s disease. J Med Chem 61, 396–402.CrossRefGoogle Scholar
  25. Hartl, D., Schuldt, V., Forler, S., Zabel, C., Klose, J., and Rohe, M. (2012). Presymptomatic alterations in energy metabolism and oxidative stress in the APP23 mouse model of Alzheimer disease. J Proteome Res 11, 3295–3304.CrossRefGoogle Scholar
  26. He, L., Wang, X., Zhao, C., Zhu, D., and Du, W. (2014). Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes. Metallomics 6, 1087–1096.CrossRefGoogle Scholar
  27. Honrath, B., Metz, I., Bendridi, N., Rieusset, J., Culmsee, C., and Dolga, A. M. (2017). Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov 3, 17076.CrossRefGoogle Scholar
  28. Hsu, W.C.J., Wildburger, N.C., Haidacher, S.J., Nenov, M.N., Folorunso, O., Singh, A.K., Chesson, B.C., Franklin, W.F., Cortez, I., Sadygov, R. G., et al. (2017). PPARgamma agonists rescue increased phosphorylation of FGF14 at S226 in the Tg2576 mouse model of Alzheimer’s disease. Exp Neurol 295, 1–17.CrossRefGoogle Scholar
  29. Hu, X., Wang, T., and Jin, F. (2016). Alzheimer’s disease and gut microbiota. Sci China Life Sci 59, 1006–1023.CrossRefGoogle Scholar
  30. Karki, R., Kodamullil, A.T., and Hofmann-Apitius, M. (2017). Comorbidity analysis between Alzheimer’s disease and type 2 diabetes mellitus (T2DM) based on shared pathways and the role of T2DM drugs. J Alzheimers Dis 60, 721–731.CrossRefGoogle Scholar
  31. Kaul, S.C., Aida, S., Yaguchi, T., Kaur, K., and Wadhwa, R. (2005). Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 280, 39373–39379.CrossRefGoogle Scholar
  32. Kaul, S.C., Duncan, E.L., Englezou, A., Takano, S., Reddel, R.R., Mitsui, Y., and Wadhwa, R. (1998). Malignant transformation of NIH3T3 cells by overexpression of mot-2 protei. Oncogene 17, 907–911.CrossRefGoogle Scholar
  33. Kiersztan, A., Winiarska, K., Drozak, J., Przedlacka, M., Wegrzynowicz, M., Fraczyk, T., and Bryla, J. (2004). Differential effects of vanadium, tungsten and molybdenum on inhibition of glucose formation in renal tubules and hepatocytes of control and diabetic rabbits: beneficial action of melatonin and N-acetylcysteine. Mol Cell Biochem 261, 9–21.CrossRefGoogle Scholar
  34. Koss, D.J., Jones, G., Cranston, A., Gardner, H., Kanaan, N.M., and Platt, B. (2016). Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer’s disease and track disease progression and cognitive decline. Acta Neuropathol 132, 875–895.CrossRefGoogle Scholar
  35. Krejsa, C.M., Nadler, S.G., Esselstyn, J.M., Kavanagh, T.J., Ledbetter, J.A., and Schieven, G.L. (1997). Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-kappaB. J Biol Chem 272, 11541–11549.Google Scholar
  36. Lei, W.H., Liu, H.X., Zhong, L.J., Yang, X.D., and Wang, K. (2007). Vanadyl ions binding to GroEL (HSP60) and inducing its depolymerization. Chin Sci Bull 52, 2775–2781.CrossRefGoogle Scholar
  37. Li, H.M., Niki, T., Taira, T., Iguchi-Ariga, S.M.M., and Ariga, H. (2005). Association of DJ-1 with chaperones and enhanced association and colocalization with mitochondrial Hsp70 by oxidative stress. Free Radical Res 39, 1091–1099.CrossRefGoogle Scholar
  38. Li, S.Y.T., Cheng, S.T.W., Zhang, D., and Leung, P.S. (2017). Identification and functional implications of Sodium/Myo-inositol cotransporter 1 in pancreatic β-cells and type 2 diabetes. Diabetes 66, 1258–1271.CrossRefGoogle Scholar
  39. Li, Z., Li, H., Zhao, C., Lv, C., Zhong, C., Xin, W., and Zhang, W. (2015). Protective effect of notoginsenoside R1 on an APP/PS1 mouse model of Alzheimer’s disease by up-regulating insulin degrading enzyme and inhibiting abeta accumulation. CNS Neurol Disorders Drug Targets 14, 360–369.CrossRefGoogle Scholar
  40. Lin, M.T., and Beal, M.F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795.CrossRefGoogle Scholar
  41. Liu, Y., Liu, W., Song, X.D., and Zuo, J. (2005). Effect of GRP75/mthsp70/ PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem 268, 45–51.CrossRefGoogle Scholar
  42. Luchsinger, J.A. (2010). Insulin resistance, type 2 diabetes, and AD: cerebrovascular disease or neurodegeneration? Neurology 75, 758–759.CrossRefGoogle Scholar
  43. Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452.CrossRefGoogle Scholar
  44. Momtaz, S., Hassani, S., Khan, F., Ziaee, M., and Abdollahi, M. (2017). Cinnamon, a promising prospect towards Alzheimer’s disease. Pharmacol Res 130, 241–258.CrossRefGoogle Scholar
  45. Morrison, C. (2016). Hope for anti-amyloid antibodies surges, yet again. Nat Biotechnol 34, 1082–1083.CrossRefGoogle Scholar
  46. Mosconi, L. (2013). Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin Transl Imag 1, 217–233.CrossRefGoogle Scholar
  47. Niu, X., Xiao, R., Wang, N., Wang, Z., Zhang, Y., Xia, Q., and Yang, X. (2016). The molecular mechanisms and rational design of anti-diabetic vanadium compounds. Curr Topics Med Chem 16, 811–822.CrossRefGoogle Scholar
  48. Papasozomenos, S.C., and Shanavas, A. (2002). Testosterone prevents the heat shock-induced overactivation of glycogen synthase kinase-3beta but not of cyclin-dependent kinase 5 and c-Jun NH2-terminal kinase and concomitantly abolishes hyperphosphorylation of tau: implications for Alzheimer’s disease. Proc Natl Acad Sci USA 99, 1140–1145.CrossRefGoogle Scholar
  49. Peng, J.H., Zhang, C.E., Wei, W., Hong, X.P., Pan, X.P., and Wang, J.Z. (2007). Dehydroevodiamine attenuates tau hyperphosphorylation and spatial memory deficit induced by activation of glycogen synthase kinase-3 in rats. Neuropharmacology 52, 1521–1527.CrossRefGoogle Scholar
  50. Qin, J., Zhang, X., Wang, Z., Li, J., Zhang, Z., Gao, L., Ren, H., Qian, M., and Du, B. (2017). Presenilin 2 deficiency facilitates Aβ-induced neuroinflammation and injury by upregulating P2X7 expression. Sci China Life Sci 60, 189–201.CrossRefGoogle Scholar
  51. Rahn, S., Zimmermann, V., Viol, F., Knaack, H., Stemmer, K., Peters, L., Lenk, L., Ungefroren, H., Saur, D., Schäfer, H., et al. (2018). Diabetes as risk factor for pancreatic cancer: hyperglycemia promotes epithelialmesenchymal-transition and stem cell properties in pancreatic ductal epithelial cells. Cancer Lett 415, 129–150.CrossRefGoogle Scholar
  52. Reiman, E.M. (2016). Alzheimer’s disease: attack on amyloid-β protein. Nature 537, 36–37.CrossRefGoogle Scholar
  53. Renaud, J., Bournival, J., Zottig, X., and Martinoli, M.G. (2014). Resveratrol protects DAergic PC12 cells from high glucose-induced oxidative stress and apoptosis: effect on p53 and GRP75 localization. Neurotox Res 25, 110–123.CrossRefGoogle Scholar
  54. Roy, D.S., Arons, A., Mitchell, T.I., Pignatelli, M., Ryan, T.J., and Tonegawa, S. (2016). Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease. Nature 531, 508–512.CrossRefGoogle Scholar
  55. Rubinsztein, D.C. (2017). RIPK1 promotes inflammation and β-amyloid accumulation in Alzheimer’s disease. Proc Natl Acad Sci USA 114, 10813–10814.CrossRefGoogle Scholar
  56. Saar Ray, M., Moskovich, O., Iosefson, O., and Fishelson, Z. (2014). Mortalin/ GRP75 binds to complement C9 and plays a role in resistance to complement-dependent cytotoxicity. J Biol Chem 289, 15014–15022.CrossRefGoogle Scholar
  57. Sanna, D., Ugone, V., Serra, M., and Garribba, E. (2017). Speciation of potential anti-diabetic vanadium complexes in real serum samples. J Inorg Biochem 173, 52–65.CrossRefGoogle Scholar
  58. Schoene-Bake, J.C., Keller, S.S., Niehusmann, P., Volmering, E., Elger, C., Deppe, M., and Weber, B. (2014). In vivo mapping of hippocampal subfields in mesial temporal lobe epilepsy: relation to histopathology. Hum Brain Mapp 35, 4718–4728.CrossRefGoogle Scholar
  59. Selenica, M.L., Jensen, H.S., Larsen, A.K., Pedersen, M.L., Helboe, L., Leist, M., and Lotharius, J. (2007). Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of Tau hyperphosphorylation. Br J Pharmacol 152, 959–979.CrossRefGoogle Scholar
  60. Sgarbossa, S., Diana, E., Marabello, D., Deagostino, A., Cadamuro, S., Barge, A., Laurenti, E., Gallicchio, M., Boscaro, V., and Ghibaudi, E. (2013). Synthesis, characterization and cell viability test of six vanadyl complexes with acetylacetonate derivatives. J Inorg Biochem 128, 26–37.CrossRefGoogle Scholar
  61. Shrestha, P., and Klann, E. (2016). Lost memories found. Nature 531, 450–451.CrossRefGoogle Scholar
  62. Soussi, A., Gaubin, Y., Beau, B., Murat, J.C., Soleilhavoup, J.P., Croute, F., and El Feki, A. (2006). Stress proteins (Hsp72/73, Grp94) expression pattern in rat organs following metavanadate administration. Effect of green tea drinking. Food Chem Toxicol 44, 1031–1037.CrossRefGoogle Scholar
  63. Strzyz, P. (2017). Synthetic biology: designer cells tackle diabetes. Nat Rev Mol Cell Biol 18, 69.CrossRefGoogle Scholar
  64. Tai, J., Liu, W., Li, Y., Li, L., and Hölscher, C. (2018). Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res 1678, 64–74.CrossRefGoogle Scholar
  65. Tönnies, E., and Trushina, E. (2017). Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57, 1105–1121.CrossRefGoogle Scholar
  66. Voloboueva, L.A., Duan, M., Ouyang, Y.B., Emery, J.F., Stoy, C., and Giffard, R.G. (2008). Overexpression of mitochondrial Hsp70/Hsp75 protects astrocytes against ischemic injury in vitro. J Cereb Blood Flow Metab 28, 1009–1016.CrossRefGoogle Scholar
  67. Voorhees, J.R., Remy, M.T., Cintrón-Pérez, C.J., El Rassi, E., Khan, M.Z., Dutca, L.M., Yin, T.C., McDaniel, L.N., Williams, N.S., Brat, D.J., et al. (2017). (−)-P7C3-S243 protects a rat model of Alzheimer’s disease from neuropsychiatric deficits and neurodegeneration without altering amyloid deposition or reactive glia. Biol Psychiatry in press doi: 10.-1016/j.biopsych.2017.10.023.Google Scholar
  68. Wadhwa, R., Yaguchi, T., Hasan, M.K., Mitsui, Y., Reddel, R.R., and Kaul, S.C. (2002). Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 274, 246–253.CrossRefGoogle Scholar
  69. Wang, Y., Yang, R., Gu, J., Yin, X., Jin, N., Xie, S., Wang, Y., Chang, H., Qian, W., Shi, J., et al. (2015). Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36, 188–200.CrossRefGoogle Scholar
  70. Wu, Y., Huang, M., Zhao, P., and Yang, X. (2013). Vanadyl acetylacetonate upregulates PPARγ and adiponectin expression in differentiated rat adipocytes. J Biol Inorg Chem 18, 623–631.CrossRefGoogle Scholar
  71. Zhang, Y., Ma, R.H., Li, X.C., Zhang, J.Y., Shi, H.R., Wei, W., Luo, D.J., Wang, Q., Wang, J.Z., and Liu, G.P. (2014). Silencing [Formula: see text] rescues Tau pathologies and memory deficits through rescuing PP2A and inhibiting GSK-3beta signaling in human Tau transgenic mice. Front Aging Neurosci 6, 123.Google Scholar
  72. Zhao, P., and Yang, X. (2013). Vanadium compounds modulate PPARγ activity primarily by increasing PPARγ protein levels in mouse insulinoma NIT-1 cells. Metallomics 5, 836–843.CrossRefGoogle Scholar
  73. Zhao, W.Q., and Townsend, M. (2009). Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer’s disease. Biochim Biophys Acta 1792, 482–496.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaqiong Dong
    • 1
  • Tessandra Stewart
    • 2
  • Yue Zhang
    • 1
  • Min Shi
    • 2
  • Chang Tan
    • 1
  • Xue Li
    • 1
  • Lan Yuan
    • 1
  • Aanchal Mehrotra
    • 2
  • Jing Zhang
    • 2
    • 3
    Email author
  • Xiaoda Yang
    • 1
    Email author
  1. 1.The State Key Laboratories of Natural and Biomimetic Drugs and Department of Chemical Biology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
  2. 2.Department of PathologyUniversity of Washington School of MedicineSeattleUSA
  3. 3.Department of Pathology, School of Basic Medical Sciences and Peking University Third HospitalPeking University Health Science CenterBeijingChina

Personalised recommendations