Science China Life Sciences

, Volume 62, Issue 1, pp 12–21 | Cite as

Primate stem cells: bridge the translation from basic research to clinic application

  • Tianqing LiEmail author
  • Zongyong Ai
  • Weizhi JiEmail author
Review From CAS & CAE Members


A growing body of literature has shown that stem cells are very effective for the treatment of degenerative diseases in rodents but these exciting results have not translated to clinical practice. The difference results from the divergence in genetic, metabolic, and physiological phenotypes between rodents and humans. The high degree of similarity between non-human primates (NHPs) and humans provides the most accurate models for preclinical studies of stem cell therapy. Using a NHP model to understand the following key issues, which cannot be addressed in humans or rodents, will be helpful for extending stem cell applications in the basic science and the clinic. These issues include pluripotency of primate stem cells, the safety and efficiency of stem cell therapy, and transplantation procedures of stem cells suitable for clinical translation. Here we review studies of the above issues in NHPs and current challenges of stem cell applications in both basic science and clinical therapies. We propose that the use of NHP models, in particular combining the serial production and transplantation procedures of stem cells is the most useful for preclinical studies designed to overcome these challenges.


non-human primate pluripotent stem cells monkey disease model stem cell therapy pluripotency state transition transplantation procedures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Yunnan National Key R&D Program and the National Natural Science Foundation of China (31760268).


  1. Ai, Z., Xiang, Z., Li, Y., Liu, G., Wang, H., Zheng, Y., Qiu, X., Zhao, S., Zhu, X., Li, Y., et al. (2016). Conversion of monkey fibroblasts to transplantable telencephalic neuroepithelial stem cells. Biomaterials 77, 53–65.CrossRefGoogle Scholar
  2. Ai, Z.Y., Zhao, S.M., and Li, T.Q. (2015). Research on primate naive pluripotent stem cells and its challenges. Sci Sin Vitae 45, 1203–1213.CrossRefGoogle Scholar
  3. Blesa, J., Trigo-Damas, I., Del Rey, N.L.G., and Obeso, J.A. (2018). The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm 125, 325–335.CrossRefGoogle Scholar
  4. Boroviak, T., Loos, R., Bertone, P., Smith, A., and Nichols, J. (2014). The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 16, 513–525.CrossRefGoogle Scholar
  5. Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols, J., Smith, A., and Bertone, P. (2015). Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. Dev Cell 35, 366–382.CrossRefGoogle Scholar
  6. Boroviak, T., and Nichols, J. (2017). Primate embryogenesis predicts the hallmarks of human naïve pluripotency. Development 144, 175–186.CrossRefGoogle Scholar
  7. Bruhns, P. (2012). Properties of mouse and human IgG receptors and their contribution to disease models. Blood 119, 5640–5649.CrossRefGoogle Scholar
  8. Canet-Aviles, R., Lomax, G.P., Feigal, E.G., and Priest, C. (2014). Proceedings: cell therapies for Parkinson’s disease from discovery to clinic. Stem Cells Transl Med 3, 979–991.CrossRefGoogle Scholar
  9. Chan, Y.S., Göke, J., Ng, J.H., Lu, X., Gonzales, K.A.U., Tan, C.P., Tng, W. Q., Hong, Z.Z., Lim, Y.S., and Ng, H.H. (2013). Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13, 663–675.CrossRefGoogle Scholar
  10. Chazaud, C., and Yamanaka, Y. (2016). Lineage specification in the mouse preimplantation embryo. Development 143, 1063–1074.CrossRefGoogle Scholar
  11. Chen, Y., Niu, Y., Li, Y., Ai, Z., Kang, Y., Shi, H., Xiang, Z., Yang, Z., Tan, T., Si, W., et al. (2015). Generation of cynomolgus monkey chimeric fetuses using embryonic stem cells. Cell Stem Cell 17, 116–124.CrossRefGoogle Scholar
  12. Chong, J.J.H., Yang, X., Don, C.W., Minami, E., Liu, Y.W., Weyers, J.J., Mahoney, W.M., Van Biber, B., Cook, S.M., Palpant, N.J., et al. (2014). Human embryonic-stem-cell-derived cardiomyocytes regenerate nonhuman primate hearts. Nature 510, 273–277.CrossRefGoogle Scholar
  13. Cox, L.A., Olivier, M., Spradling-Reeves, K., Karere, G.M., Comuzzie, A. G., and VandeBerg, J.L. (2017). Nonhuman primates and translational research—cardiovascular disease. ILAR J 58, 235–250.CrossRefGoogle Scholar
  14. Davies, S.J.A., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G., and Silver, J. (1997). Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390, 680–683.CrossRefGoogle Scholar
  15. De Los Angeles, A., Ferrari, F., Xi, R., Fujiwara, Y., Benvenisty, N., Deng, H., Hochedlinger, K., Jaenisch, R., Lee, S., Leitch, H.G., et al. (2015). Hallmarks of pluripotency. Nature 525, 469–478.CrossRefGoogle Scholar
  16. Deglincerti, A., Croft, G.F., Pietila, L.N., Zernicka-Goetz, M., Siggia, E.D., and Brivanlou, A.H. (2016). Self-organization of the in vitro attached human embryo. Nature 533, 251–254.CrossRefGoogle Scholar
  17. Durruthy-Durruthy, J., Wossidlo, M., Pai, S., Takahashi, Y., Kang, G., Omberg, L., Chen, B., Nakauchi, H., Reijo Pera, R., and Sebastiano, V. (2016). Spatiotemporal reconstruction of the human blastocyst by single- cell gene-expression analysis informs induction of naive pluripotency. Dev Cell 38, 100–115.CrossRefGoogle Scholar
  18. Džaja, D., Hladnik, A., Bičanić, I., Baković, M., and Petanjek, Z. (2014). Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure. Front Neuroanat 8, 103.Google Scholar
  19. Freed, C.R., Zhou, W., and Breeze, R.E. (2011). Dopamine cell transplantation for Parkinson’s disease: the importance of controlled clinical trials. Neurotherapeutics 8, 549–561.CrossRefGoogle Scholar
  20. Gafni, O., Weinberger, L., Mansour, A.A.F., Manor, Y.S., Chomsky, E., Ben-Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., et al. (2013). Derivation of novel human ground state naive pluripotent stem cells. Nature 504, 282–286.CrossRefGoogle Scholar
  21. Gosselin, D., Skola, D., Coufal, N.G., Holtman, I.R., Schlachetzki, J.C.M., Sajti, E., Jaeger, B.N., O’Connor, C., Fitzpatrick, C., Pasillas, M.P., et al. (2017). An environment-dependent transcriptional network specifies human microglia identity. Science 356, eaal3222.CrossRefGoogle Scholar
  22. Grow, D.A., McCarrey, J.R., and Navara, C.S. (2016). Advantages of no- nhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res 17, 352–366.CrossRefGoogle Scholar
  23. Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith, A., and Nichols, J. (2016). Naive pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Rep 6, 437–446.CrossRefGoogle Scholar
  24. Gutova, M., Frank, J.A., D’Apuzzo, M., Khankaldyyan, V., Gilchrist, M. M., Annala, A.J., Metz, M.Z., Abramyants, Y., Herrmann, K.A., Ghoda, L.Y., et al. (2013). Magnetic resonance imaging tracking of ferumoxytol- labeled human neural stem cells: studies leading to clinical use. Stem Cells Transl Med 2, 766–775.CrossRefGoogle Scholar
  25. Hallett, P.J., Deleidi, M., Astradsson, A., Smith, G.A., Cooper, O., Osborn, T.M., Sundberg, M., Moore, M.A., Perez-Torres, E., Brownell, A.L., et al. (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16, 269–274.CrossRefGoogle Scholar
  26. Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011). Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146, 519–532.CrossRefGoogle Scholar
  27. Huang, K., Maruyama, T., and Fan, G. (2014). The naive state of human pluripotent stem cells: a synthesis of stem cell and preimplantation embryo transcriptome analyses. Cell Stem Cell 15, 410–415.CrossRefGoogle Scholar
  28. Humbert, O., Peterson, C.W., Norgaard, Z.K., Radtke, S., and Kiem, H.-P. (2017). A nonhuman primate transplantation model to evaluate hematopoietic stem cell gene editing strategies for β-hemoglobinopathies. Mol Ther Methods Clin Dev 8, 75–86.CrossRefGoogle Scholar
  29. Iadecola, C., and Anrather, J. (2011). The immunology of stroke: from mechanisms to translation. Nat Med 17, 796–808.CrossRefGoogle Scholar
  30. Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir- Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al. (2017). A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17.CrossRefGoogle Scholar
  31. Kikuchi, T., Morizane, A., Doi, D., Magotani, H., Onoe, H., Hayashi, T., Mizuma, H., Takara, S., Takahashi, R., Inoue, H., et al. (2017). Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548, 592–596.CrossRefGoogle Scholar
  32. Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., et al. (2011). Dopamine neurons derived from human EScells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551.CrossRefGoogle Scholar
  33. Kwiecien, T.D., Sy, C., and Ding, Y. (2014). Rodent models of ischemic stroke lack translational relevance… are baboon models the answer? Neurol Res 36, 417–422.CrossRefGoogle Scholar
  34. Li, M., Li, Z., Yao, Y., Jin, W.N., Wood, K., Liu, Q., Shi, F.D., and Hao, J. (2017). Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci USA 114, E396–E405.CrossRefGoogle Scholar
  35. Ma, T., Wang, C., Wang, L., Zhou, X., Tian, M., Zhang, Q., Zhang, Y., Li, J., Liu, Z., Cai, Y., et al. (2013). Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci 16, 1588–1597.CrossRefGoogle Scholar
  36. Magnúsdóttir, E., Dietmann, S., Murakami, K., Günesdogan, U., Tang, F., Bao, S., Diamanti, E., Lao, K., Gottgens, B., and Azim Surani, M. (2013). A tripartite transcription factor network regulates primordial germ cell specification in mice. Nat Cell Biol 15, 905.CrossRefGoogle Scholar
  37. Malloy, K.E., Li, J., Choudhury, G.R., Torres, A., Gupta, S., Kantorak, C., Goble, T., Fox, P.T., Clarke, G.D., and Daadi, M.M. (2017). Magnetic resonance imaging-guided delivery of neural stem cells into the basal ganglia of nonhuman primates reveals a pulsatile mode of cell dispersion. Stem Cells Transl Med 6, 877–885.CrossRefGoogle Scholar
  38. Masaki, H., Kato-Itoh, M., Takahashi, Y., Umino, A., Sato, H., Ito, K., Yanagida, A., Nishimura, T., Yamaguchi, T., Hirabayashi, M., et al. (2016). Inhibition of apoptosis overcomes stage-related compatibility barriers to chimera formation in mouse embryos. Cell Stem Cell 19, 587–592.CrossRefGoogle Scholar
  39. Mascetti, V.L., and Pedersen, R.A. (2016). Contributions of mammalian chimeras to pluripotent stem cell research. Cell Stem Cell 19, 163–175.CrossRefGoogle Scholar
  40. Mestas, J., and Hughes, C.C.W. (2004). Of mice and not men: differences between mouse and human immunology. J Immunol 172, 2731–2738.CrossRefGoogle Scholar
  41. Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y., Nakamura, S., Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of pluripotency among mice, monkeys and humans. Nature 537, 57–62.CrossRefGoogle Scholar
  42. Nemati, S.N., Jabbari, R., Hajinasrollah, M., Zare Mehrjerdi, N., Azizi, H., Hemmesi, K., Moghiminasr, R., Azhdari, Z., Talebi, A., Mohitmafi, S., et al. (2014). Transplantation of adult monkey neural stem cells into a contusion spinal cord injury model in rhesus macaque monkeys. Cell J (Yakhteh) 16, 117–130.Google Scholar
  43. Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. Cell Stem Cell 4, 487–492.CrossRefGoogle Scholar
  44. Niu, Y., Li, T., and Ji, W. (2017). Paving the road for biomedicine: genome editing and stem cells in primates. Natl Sci Rev 4, 543–549.CrossRefGoogle Scholar
  45. Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., et al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843.CrossRefGoogle Scholar
  46. Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T., and Saitou, M. (2009). A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571–584.CrossRefGoogle Scholar
  47. Osorno, R., Tsakiridis, A., Wong, F., Cambray, N., Economou, C., Wilkie, R., Blin, G., Scotting, P.J., Chambers, I., and Wilson, V. (2012). The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. Development 139, 2288–2298.CrossRefGoogle Scholar
  48. Pastor, W.A., Chen, D., Liu, W., Kim, R., Sahakyan, A., Lukianchikov, A., Plath, K., Jacobsen, S.E., and Clark, A.T. (2016). Naive human pluripotent cells feature a methylation landscape devoid of blastocyst or germline memory. Cell Stem Cell 18, 323–329.CrossRefGoogle Scholar
  49. Prinz, M., and Priller, J. (2014). Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15, 300–312.CrossRefGoogle Scholar
  50. Pritchard, C.D., Slotkin, J.R., Yu, D., Dai, H., Lawrence, M.S., Bronson, R. T., Reynolds, F.M., Teng, Y.D., Woodard, E.J., and Langer, R.S. (2010). Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J Neurosci Methods 188, 258–269.CrossRefGoogle Scholar
  51. Qiu, Z., Farnsworth, S.L., Mishra, A., and Hornsby, P.J. (2013). Patientspecific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models. Stem Cells Cloning 6, 19–29.Google Scholar
  52. Rammos, C., Hendgen-Cotta, U.B., Deenen, R., Pohl, J., Stock, P., Hinzmann, C., Kelm, M., and Rassaf, T. (2014). Age-related vascular gene expression profiling in mice. Mech Ageing Dev 135, 15–23.CrossRefGoogle Scholar
  53. Ransohoff, R.M., and Brown, M.A. (2012). Innate immunity in the central nervous system. J Clin Invest 122, 1164–1171.CrossRefGoogle Scholar
  54. Rosenzweig, E.S., Brock, J.H., Lu, P., Kumamaru, H., Salegio, E.A., Kadoya, K., Weber, J.L., Liang, J.J., Moseanko, R., Hawbecker, S., et al. (2018). Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat Med 24, 484–490.CrossRefGoogle Scholar
  55. Rossant, J. (2016). Implantation barrier overcome. Nature 533, 182–183.CrossRefGoogle Scholar
  56. Samata, B., Doi, D., Nishimura, K., Kikuchi, T., Watanabe, A., Sakamoto, Y., Kakuta, J., Ono, Y., and Takahashi, J. (2016). Purification of functional human ESand iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nat Commun 7, 13097.CrossRefGoogle Scholar
  57. Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., et al. (2015). Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 17, 178–194.CrossRefGoogle Scholar
  58. Serra, M., Brito, C., Correia, C., and Alves, P.M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends Biotech 30, 350–359.CrossRefGoogle Scholar
  59. Shahbazi, M.N., Jedrusik, A., Vuoristo, S., Recher, G., Hupalowska, A., Bolton, V., Fogarty, N.M.E., Campbell, A., Devito, L.G., Ilic, D., et al. (2016). Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18, 700–708.CrossRefGoogle Scholar
  60. Shirai, H., Mandai, M., Matsushita, K., Kuwahara, A., Yonemura, S., N-akano, T., Assawachananont, J., Kimura, T., Saito, K., Terasaki, H., et al. (2016). Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci USA 113, E81–E90.CrossRefGoogle Scholar
  61. Smith, A. (2017). Formative pluripotency: the executive phase in a developmental continuum. Development 144, 365–373.CrossRefGoogle Scholar
  62. Szalay, G., Martinecz, B., Lénárt, N., Környei, Z., Orsolits, B., Judák, L., Császár, E., Fekete, R., West, B.L., Katona, G., et al. (2016). Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 7, 11499.CrossRefGoogle Scholar
  63. Tachibana, M., Sparman, M., Ramsey, C., Ma, H., Lee, H.S., Penedo, M.C. T., and Mitalipov, S. (2012). Generation of chimeric rhesus monkeys. Cell 148, 285–295.CrossRefGoogle Scholar
  64. Takagi, Y., Takahashi, J., Saiki, H., Morizane, A., Hayashi, T., Kishi, Y., Fukuda, H., Okamoto, Y., Koyanagi, M., Ideguchi, M., et al. (2005). Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115, 102–109.CrossRefGoogle Scholar
  65. Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F., Clarke, J., Mansfield, W., et al. (2014). Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 162, 452–453.CrossRefGoogle Scholar
  66. Teffer, K., and Semendeferi, K. (2012). Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res 195, 191–218.CrossRefGoogle Scholar
  67. Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A., Reddy, J., Fan, Z.P., Maetzel, D., Ganz, K., Shi, L., et al. (2014). Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15, 471–487.CrossRefGoogle Scholar
  68. Wang, M., Jiang, L., Monticone, R.E., and Lakatta, E.G. (2014). Proinflammation: the key to arterial aging. Trends Endocrinol Metab 25, 72–79.CrossRefGoogle Scholar
  69. Wang, S., Zou, C., Fu, L., Wang, B., An, J., Song, G., Wu, J., Tang, X., Li, M., Zhang, J., et al. (2015). Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov 1, 15012.CrossRefGoogle Scholar
  70. Wang, X., Li, T., Cui, T., Yu, D., Liu, C., Jiang, L., Feng, G., Wang, L., Fu, R., Zhang, X., et al. (2017). Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Res 28, 126–129.CrossRefGoogle Scholar
  71. Ware, C.B., Nelson, A.M., Mecham, B., Hesson, J., Zhou, W., Jonlin, E.C., Jimenez-Caliani, A.J., Deng, X., Cavanaugh, C., Cook, S., et al. (2014). Derivation of naive human embryonic stem cells. Proc Natl Acad Sci USA 111, 4484–4489.CrossRefGoogle Scholar
  72. Wu, J., and Izpisua Belmonte, J.C. (2016). Stem cells: a renaissance in human biology research. Cell 165, 1572–1585.CrossRefGoogle Scholar
  73. Wu, J., Platero-Luengo, A., Sakurai, M., Sugawara, A., Gil, M.A., Yamauchi, T., Suzuki, K., Bogliotti, Y.S., Cuello, C., Morales Valencia, M., et al. (2017). Interspecies chimerism with mammalian pluripotent stem cells. Cell 168, 473–486.e15.CrossRefGoogle Scholar
  74. Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186.CrossRefGoogle Scholar
  75. Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., et al. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20, 1131–1139.CrossRefGoogle Scholar
  76. Yang, S.H., Cheng, P.H., Banta, H., Piotrowska-Nitsche, K., Yang, J.J., Cheng, E.C.H., Snyder, B., Larkin, K., Liu, J., Orkin, J., et al. (2008). Towards a transgenic model of Huntington’s disease in a non-human primate. Nature 453, 921–924.CrossRefGoogle Scholar
  77. Zhu, X., Li, B., Ai, Z., Xiang, Z., Zhang, K., Qiu, X., Chen, Y., Li, Y., Rizak, J.D., Niu, Y., et al. (2016). A Robust single primate neuroepithelial cell clonal expansion system for neural tube development and disease studies. Stem Cell Rep 6, 228–242.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina

Personalised recommendations