Science China Life Sciences

, Volume 62, Issue 1, pp 63–75 | Cite as

GhKLCR1, a kinesin light chain-related gene, induces drought-stress sensitivity in Arabidopsis

  • Jie Li
  • Daoqian Yu
  • Ghulam Qanmber
  • Lili Lu
  • Lingling Wang
  • Lei Zheng
  • Zhao Liu
  • Huanhuan Wu
  • Xiaodong Liu
  • Quanjia Chen
  • Fuguang LiEmail author
  • Zuoren YangEmail author
Research Paper


Drought stress results in significant losses in agricultural production, and especially that of cotton. The molecular mechanisms that coordinate drought tolerance remain elusive in cotton. Here, we isolated a drought-response gene GhKLCR1, which is a close homolog of AtKLCR1, which encodes a kinesin light chain-related protein enriched with a tetratrico peptide-repeat region. A subcellular localization assay showed that GhKLCR1 is associated with the cell membrane. A tissue-specific expression profile analysis demonstrated that GhKLCR1 is a cotton root-specific gene. Further abiotic and hormonal stress treatments showed that GhKLCR1 was upregulated during abiotic stresses, especially after polyethylene glycol treatments. In addition, the glucuronidase (GUS) staining activity increased as the increment of mannitol concentration in transgenic Arabidopsis plants harboring the fusion construct PGhKLCR1::GUS. The root lengths of 35S::GhKLCR1 lines were significantly reduced compared with that of wild type. Additionally, seed germination was strongly inhibited in 35S::GhKLCR1 lines after 300-mmol L−1 mannitol treatments as compared with Columbia-0, indicating the sensitivity of GhKLCR1 to drought. These findings provide a better understanding of the structural, physiological and functional mechanisms of kinesin light chain-related proteins.


GhKLCR1 kinesin Arabidopsis mannitol seed germination drought sensitivity GUS cis-elements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (31501345).


  1. Abel, S., and Theologis, A. (1995). A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum). Plant J 8, 87–96.CrossRefGoogle Scholar
  2. Abel, S., Savchenko, T., and Levy, M. (2005). Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5, 72.CrossRefGoogle Scholar
  3. Akhmanova, A., and Hammer, J.A., 3rd. (2010). Linking molecular motors to membrane cargo. Curr Opin Cell Biol 22, 479–487.CrossRefGoogle Scholar
  4. Anandalakshmi, R., Marathe, R., Ge, X., Herr, J.M., Mau, C., Mallory, A., Pruss, G., Bowman, L., and Vance, V.B. (2000). A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290, 142–144.CrossRefGoogle Scholar
  5. Awasthi, A., Paul, P., Kumar, S., Verma, S.K., Prasad, R., and Dhaliwal, H. S. (2012). Abnormal endosperm development causes female sterility in rice insertional mutant OsAPC6. Plant Sci 183, 167–174.CrossRefGoogle Scholar
  6. Bähler, M., and Rhoads, A. (2002). Calmodulin signaling via the IQ motif. FEBS Lett 513, 107–113.CrossRefGoogle Scholar
  7. Bandurska, H., Stroiński, A., and Zielezińska, M. (1997). Effects of water deficit stress on membrane properties, lipid peroxidation and hydrogen peroxide metabolism in the leaves of barley genotypes. Acta Soc Bot Pol 66, 177–183.CrossRefGoogle Scholar
  8. Bhatt, R.M., and Rao, N.K.S. (2005). Influence of pod load on response of okra to water stress. Indian J Plant Physiol 10, 54.Google Scholar
  9. Blancaflor, E.B., Zhao, L., and Harrison, M.J. (2001). Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217, 154–165.CrossRefGoogle Scholar
  10. Bockel, C., Salamini, F., and Bartels, D. (1998). Isolation and characterization of genes expressed during early events of the dehydration process in the resurrection plant Craterostigma plantagineum. J Plant Physiol 152, 158–166.CrossRefGoogle Scholar
  11. Bouché, N., Scharlat, A., Snedden, W., Bouchez, D., and Fromm, H. (2002). A novel family of calmodulin-binding transcription activators in multicellular organisms. J Biol Chem 277, 21851–21861.CrossRefGoogle Scholar
  12. Bürstenbinder, K., Savchenko, T., Müller, J., Adamson, A.W., Stamm, G., Kwong, R., Zipp, B.J., Dinesh, D.C., and Abel, S. (2013). Arabidopsis calmodulin-binding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. J Biol Chem 288, 1871–1882.CrossRefGoogle Scholar
  13. Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., and Abel, S. (2017). The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol 173, 1692–1708.CrossRefGoogle Scholar
  14. Busk, P.K., and Pagès, M. (1998). Regulation of abscisic acid-induced transcription. Plant Mol Biol 37, 425–435.CrossRefGoogle Scholar
  15. Cessna, S.G., Chandra, S., and Low, P.S. (1998). Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. J Biol Chem 273, 27286–27291.CrossRefGoogle Scholar
  16. Cleary, A.L. (2001). Plasma membrane-cell wall connections: roles in mitosis and cytokinesis revealed by plasmolysis of Tradescantia virginiana leaf epidermal cells. Protoplasma 215, 21–34.CrossRefGoogle Scholar
  17. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743.CrossRefGoogle Scholar
  18. Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., and Chong, K. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143, 1739–1751.CrossRefGoogle Scholar
  19. Dat, J.F., Foyer, C.H., and Scott, I.M. (1998). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118, 1455–1461.CrossRefGoogle Scholar
  20. Day, I.S., Reddy, V.S., Ali, G.S., and Reddy, A.S.N. (2002). Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3, research0056-1.Google Scholar
  21. Diefenbach, R.J., Mackay, J.P., Armati, P.J., and Cunningham, A.L. (1998). The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670.CrossRefGoogle Scholar
  22. Dolfini, D., Gatta, R., and Mantovani, R. (2012). NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47, 29–49.CrossRefGoogle Scholar
  23. Dumka, D., Bednarz, C.W., and Maw, B.W. (2003). Delayed initiation of fruiting as a mechanism of improved drought avoidance in cotton. Crop Sci 44, 528–534.CrossRefGoogle Scholar
  24. Durner, J., and Klessig, D.F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem 271, 28492–28501.CrossRefGoogle Scholar
  25. Farooq, M., Barsa, S.M.A., and Wahid, A. (2006). Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul 49, 285–294.CrossRefGoogle Scholar
  26. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29, 185–212.CrossRefGoogle Scholar
  27. Fellbrich, G., Blume, B., Brunner, F., Hirt, H., Kroj, T., Ligterink, W., Romanski, A., and Nurnberger, T. (2000). Phytophthora parasitica elicitor-induced reactions in cells of petroselinum crispum. Plant Cell Physiol 41, 692–701.CrossRefGoogle Scholar
  28. Ghaffari, M., Toorchi, M., Valizadeh, M., and Komatsu, S. (2013). Differential response of root proteome to drought stress in drought sensitive and tolerant sunflower inbred lines. Funct Plant Biol 40, 609–617.CrossRefGoogle Scholar
  29. Goddard, H., Manison, N.F.H., Tomos, D., and Brownlee, C. (2000). Elemental propagation of calcium signals in response-specific patterns determined by environmental stimulus strength. Proc Natl Acad Sci USA 97, 1932–1937.CrossRefGoogle Scholar
  30. Gong, M., van der Luit, A.H., Knight, M.R., and Trewavas, A.J. (1998). Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116, 429–437.CrossRefGoogle Scholar
  31. Haley, A., Russell, A.J., Wood, N., Allan, A.C., Knight, M., Campbell, A. K., and Trewavas, A.J. (1995). Effects of mechanical signaling on plant cell cytosolic calcium. Proc Natl Acad Sci USA 92, 4124–4128.CrossRefGoogle Scholar
  32. Hasanuzzaman, M., Nahar, K., Alam, M.M., Roychowdhury, R., and Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14, 9643–9684.CrossRefGoogle Scholar
  33. Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10, 682–696.CrossRefGoogle Scholar
  34. Hrabak, E.M., Chan, C.W.M., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., et al. (2003). The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132, 666–680.CrossRefGoogle Scholar
  35. Iwata, K., Tazawa, M., and Itoh, T. (2001). Turgor pressure regulation and the orientation of cortical microtubules in spirogyra cells. Plant Cell Physiol 42, 594–598.CrossRefGoogle Scholar
  36. Kalai, T., Bouthour, D., Manai, J., Bettaieb Ben Kaab, L., and Gouia, H. (2016). Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Arch Agronomy Soil Sci 62, 892–904.CrossRefGoogle Scholar
  37. Kang, H.M., and Saltveit, M.E. (2001). Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedling radicles. Physiol Plant 113, 548–556.CrossRefGoogle Scholar
  38. Kiegle, E., Moore, C.A., Haseloff, J., Tester, M.A., and Knight, M.R. (2000). Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23, 267–278.CrossRefGoogle Scholar
  39. Knight, H. (2000). Calcium signaling during abiotic stress in plants. Int Rev Cytol 195, 269–324.CrossRefGoogle Scholar
  40. Knight, H., Trewavas, A.J., and Knight, M.R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8, 489–503.CrossRefGoogle Scholar
  41. Knight, H., Trewavas, A.J., and Knight, M.R. (1997). Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12, 1067–1078.CrossRefGoogle Scholar
  42. Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524–526.CrossRefGoogle Scholar
  43. Kumar, M., Basha, P.O., Puri, A., Rajpurohit, D., Randhawa, G.S., Sharma, T.R., and Dhaliwal, H.S. (2010). A candidate gene OsAPC6 of anaphase-promoting complex of rice identified through T-DNA insertion. Funct Integr Genomics 10, 349–358.CrossRefGoogle Scholar
  44. Kundu, S., Chakraborty, D., and Pal, A. (2011). Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. J Proteomics 74, 337–349.CrossRefGoogle Scholar
  45. Kundu, S., Chakraborty, D., Kundu, A., and Pal, A. (2013). Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci 11, 15.CrossRefGoogle Scholar
  46. Kusaka, M., Ohta, M., and Fujimura, T. (2005). Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiologia Plantarum 125, 474–489.CrossRefGoogle Scholar
  47. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325–327.CrossRefGoogle Scholar
  48. Li, J., Liu, J., Wang, G., Cha, J.Y., Li, G., Chen, S., Li, Z., Guo, J., Zhang, C., Yang, Y., et al. (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell 27, 908–925.CrossRefGoogle Scholar
  49. Lin, Z., Arciga-Reyes, L., Zhong, S., Alexander, L., Hackett, R., Wilson, I., and Grierson, D. (2008). SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development. J Exp Bot 59, 4271–4287.CrossRefGoogle Scholar
  50. Lipka, E., and Müller, S. (2012). Potential roles for Kinesins at the cortical division site. Front Plant Sci 3, 158.CrossRefGoogle Scholar
  51. Lloyd, C.W., Shaw, P.J., Warn, R.M., and Yuan, M. (1996). Gibberellicacid-induced reorientation of cortical microtubules in living plant cells. J Microsc 181, 140–144.CrossRefGoogle Scholar
  52. Loka, D.A., and Oosterhuis, D.M. (2014). Water-deficit stress effects on pistil biochemistry and leaf physiology in cotton (Gossypium hirsutum L.). South African J Bot 93, 131–136.CrossRefGoogle Scholar
  53. Luan, S. (2009). The CBL-CIPK network in plant calcium signaling. Trends Plant Sci 14, 37–42.CrossRefGoogle Scholar
  54. Maity, S.N., and de Crombrugghe, B. (1996). Purification, characterization, and role of CCAAT-binding factor in transcription. Method Enzymol 273, 217–232.CrossRefGoogle Scholar
  55. Matuoka, K., and Chen, K.Y. (2002). Transcriptional regulation of cellular ageing by the CCAAT box-binding factor CBF/NF-Y. Ageing Res Rev 1, 639–651.CrossRefGoogle Scholar
  56. McCormack, E., and Braam, J. (2003). Calmodulins and related potential calcium sensors of Arabidopsis. New Phytol 159, 585–598.CrossRefGoogle Scholar
  57. Meinert, M.C., and Delmer, D.P. (1977). Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59, 1088–1097.CrossRefGoogle Scholar
  58. Messitt, T.J., Gagnon, J.A., Kreiling, J.A., Pratt, C.A., Yoon, Y.J., and Mowry, K.L. (2008). Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes. Dev Cell 15, 426–436.CrossRefGoogle Scholar
  59. Metwally, A., Finkemeier, I., Georgi, M., and Dietz, K.J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132, 272–281.CrossRefGoogle Scholar
  60. Mirza, M.A., and Sheikh, A.L. (1994). Prospects of developing novel cottons through biotechniques. Pakistan J Agr Res 15, 195–201.Google Scholar
  61. Nelson, D.E., Repetti, P.P., Adams, T.R., Creelman, R.A., Wu, J., Warner, D.C., Anstrom, D.C., Bensen, R.J., Castiglioni, P.P., Donnarummo, M. G., et al. (2007). Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104, 16450–16455.CrossRefGoogle Scholar
  62. Nir, I., Moshelion, M., and Weiss, D. (2014). The Arabidopsis GIBBERELLIN METHYL TRANSFERASE 1 suppresses gibberellin activity, reduces whole-plant transpiration and promotes drought tolerance in transgenic tomato. Plant Cell Environ 37, 113–123.CrossRefGoogle Scholar
  63. Pace, P.F., Cralle, H.T., Shm, E.H., Cothren, J.T., and Senseman, S.A. (1999). Drought-induced changes in shoot and root growth of young cotton plants. J Cotton Sci 3, 183–187.Google Scholar
  64. Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acidsignalling in guard cells. Nature 406, 731–734.CrossRefGoogle Scholar
  65. Price, A., Knight, M., Knight, H., Cuin, T., Tomos, D., and Ashenden, T. (1996). Cytosolic calcium and oxidative plant stress. Biochm Soc Trans 24, 479–483.CrossRefGoogle Scholar
  66. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Res 33, W116–W120.CrossRefGoogle Scholar
  67. Radin, J.W. (1981). Water relations of cotton plants under nitrogen deficiency. IV. Leaf senescence during drought and its relation to stomatal closure. Physiol Plant 51, 145–149.Google Scholar
  68. Reddy, V.S., Day, I.S., Thomas, T., and Reddy, A.S.N. (2004). KIC, a novel Ca2+ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. Plant Cell 16, 185–200.CrossRefGoogle Scholar
  69. Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O., Cain, S.M., Pechatnikova, E., Wilson-Kubalek, E.M., Whittaker, M., et al. (1999). A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784.CrossRefGoogle Scholar
  70. Roos, W. (2000). Ion mapping in plant cells—methods and applications in signal transduction research. Planta 210, 347–370.CrossRefGoogle Scholar
  71. Sedbrook, J.C., Kronebusch, P.J., Borisy, G.G., Trewavas, A.J., and Masson, P.H. (1996). Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol 111, 243–257.CrossRefGoogle Scholar
  72. Skoufias, D.A., Cole, D.G., Wedaman, K.P., and Scholey, J.M. (1993). The caroxyl-terminal domain of kinesin heavy chain is important for membrane binding. J Biol Chem 269, 1477–1485.Google Scholar
  73. Siefers, N., Dang, K.K., Kumimoto, R.W., Bynum, W.E., Tayrose, G., and Holt, B.F. (2009). Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol 149, 625–641.CrossRefGoogle Scholar
  74. Sinha, S., Kim, I.S., Sohn, K.Y., de Crombrugghe, B., and Maity, S.N. (1996). Three classes of mutations in the A subunit of the CCAATbinding factor CBF delineate functional domains involved in the threestep assembly of the CBF-DNA complex. Mol Cell Biol 16, 328–337.CrossRefGoogle Scholar
  75. Subbaiah, C.C., Bush, D.S., and Sachs, M.M. (1994). Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6, 1747–1762.CrossRefGoogle Scholar
  76. Subbaiah, C.C., Bush, D.S., and Sachs, M.M. (1998). Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118, 759–771.CrossRefGoogle Scholar
  77. Tai, A.W., Chuang, J.Z., Bode, C., Wolfrum, U., and Sung, C.H. (1999). Rhodopsin’s carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887.CrossRefGoogle Scholar
  78. Takahashi, K., Isobe, M., Knight, M.R., Trewavas, A.J., and Muto, S. (1997). Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells. Plant Physiol 113, 587–594.CrossRefGoogle Scholar
  79. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731–2739.CrossRefGoogle Scholar
  80. Tranguch, S., Cheung-Flynn, J., Daikoku, T., Prapapanich, V., Cox, M.B., Xie, H., Wang, H., Das, S.K., Smith, D.F., and Dey, S.K. (2005). Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci USA 102, 14326–14331.CrossRefGoogle Scholar
  81. Verhey, K.J., Kaul, N., and Soppina, V. (2011). Kinesin assembly and movement in cells. Annu Rev Biophys 40, 267–288.CrossRefGoogle Scholar
  82. Wang, G., Gutierrez, M., Asiimwe, R.K., and Zarnstorff, M. (2011). Response of upland cotton (Gossypium hirsutum) to fruiting branch removal. J Agronomy Crop Sci 197, 155–163.CrossRefGoogle Scholar
  83. Wang, Q.Y., and Nick, P. (2001). Cold acclimation can induce microtubular cold stability in a manner distinct from abscisic acid. Plant Cell Physiol 42, 999–1005.CrossRefGoogle Scholar
  84. Weinl, S., and Kudla, J. (2009). The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184, 517–528.CrossRefGoogle Scholar
  85. Witte, C.P., Noël, L.D., Gielbert, J., Parker, J.E., and Romeis, T. (2004). Rapid one-step protein purification from plant material using the eightamino acid StrepII epitope. Plant Mol Biol 55, 135–147.CrossRefGoogle Scholar
  86. Yan, S., and Dong, X. (2014). Perception of the plant immune signal salicylic acid. Curr Opin Plant Biol 20, 64–68.CrossRefGoogle Scholar
  87. Yang, Z., Wolf, I.M., Chen, H., Periyasamy, S., Chen, Z., Yong, W., Shi, S., Zhao, W., Xu, J., Srivastava, A., et al. (2006). FK506-binding protein 52 is essential to uterine reproductive physiology controlled by the progesterone receptor A isoform. Mol Endocrinol 20, 2682–2694.CrossRefGoogle Scholar
  88. Yang, Z., Li, C., Wang, Y., Zhang, C., Wu, Z., Zhang, X., Liu, C., and Li, F. (2014). GhAGL15s, preferentially expressed during somatic embryogenesis, promote embryogenic callus formation in cotton (Gossypium hirsutum L.). Mol Genet Genomics 289, 873–883.CrossRefGoogle Scholar
  89. Zhang, C., Bian, M., Yu, H., Liu, Q., and Yang, Z. (2011). Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.). Plant Physiol Biochem 49, 1306–1312.CrossRefGoogle Scholar
  90. Zhang, H., Yin, W., and Xia, X. (2008). Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment. Plant Growth Regul 56, 129–140.CrossRefGoogle Scholar
  91. Zhang, T.Z., Hu, Y., Jiang, W.K., Fang, L., Guan, X.Y., Chen, J.D., Zhang, J.B., Saski, C.A., Scheffler, B.E., Stelly, D.M., et al. (2015). Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33, 531–537.Google Scholar
  92. Zhao, T.J., Sun, S., Liu, Y., Liu, J.M., Liu, Q., Yan, Y.B., and Zhou, H.M. (2006). Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 281, 10752–10759.CrossRefGoogle Scholar
  93. Zhou, B., Zhang, L., Ullah, A., Jin, X., Yang, X., and Zhang, X. (2016). Identification of multiple stress responsive genes by sequencing a normalized cDNA library from sea-land cotton (Gossypium barbadense L.). PLoS ONE 11, e0152927.CrossRefGoogle Scholar
  94. Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4, 401–406.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jie Li
    • 1
    • 2
  • Daoqian Yu
    • 1
    • 2
  • Ghulam Qanmber
    • 2
  • Lili Lu
    • 2
  • Lingling Wang
    • 2
  • Lei Zheng
    • 2
  • Zhao Liu
    • 2
  • Huanhuan Wu
    • 2
  • Xiaodong Liu
    • 1
  • Quanjia Chen
    • 1
  • Fuguang Li
    • 2
    Email author
  • Zuoren Yang
    • 2
    Email author
  1. 1.Xinjiang Research Base, State Key Laboratory of Cotton BiologyXinjiang Agricultural UniversityUrumqiChina
  2. 2.State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina

Personalised recommendations