Science China Life Sciences

, Volume 61, Issue 8, pp 954–965 | Cite as

Association of TRIMCyp and TRIM5α from assam macaques leads to a functional trade-off between HIV-1 and N-MLV inhibition

  • Dan Mu
  • Jia-Wu Zhu
  • Feng-Liang Liu
  • Hong-Yi Zheng
  • Yong-Tang ZhengEmail author
Research Paper


TRIM5α restricts retroviruses in a species-specific manner. Cyclophilin A was independently retrotransposed into the TRIM5 loci in different species, leading to the generation of antiviral TRIM5-cyclophilin A (TRIMCyp) proteins. Previously, we found that assam macaques express a TRIMCyp chimera (amTRIMCyp), along with a TRIM5α allelic protein (amTRIM5α). Herein, we investigated the antiviral activity of amTRIMCyp and amTRIM5α individually, as well as their interaction and joint effects. amTRIMCyp showed a divergent restriction pattern from amTRIM5α. Although both proteins potently restricted the replication of HIV-1, only amTRIM5α inhibited N-MLV. Remarkably, cellular anti-HIV-1 activity increased when amTRIMCyp and amTRIM5α were coexpressed, indicating a synergistic block of HIV-1 replication. Consistently, PMBCs from heterozygous amTRIM5α/TRIMCyp showed stronger resistance to HIV-1 infection than those from amTRIM5α/TRIM5α homozygotes. The anti-HIV-1 synergistic effect was dependent on the amTRIMCyp-amTRIM5α interaction. In contrast, amTRIMCyp completely abrogated the anti-N-MLV activity mediated by amTRIM5α, showing a dominant-negative effect, indicating that the generation of amTRIMCyp was involved in the trade-off between divergent restriction activities. Our results provide a new paradigm to study functional trade-offs mediated by allelic proteins, a theoretical basis for utilizing animal models with various TRIM5 alleles, as well as novel HIV-1 gene therapy strategies.


TRIMCyp/TRIM5α assam macaque HIV-1 N-MLV functional trade-off 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Prof. Guang-Xia Gao (Institute of Biophysics, Chinese Academy of Sciences) for providing the HIV-1-GFP and NMLV- GFP packaging plasmids, Prof. Ce-Shi Chen (Kunming Institute of Zoology, Chinese Academy of Sciences) for providing the Myc-ub plasmid, Prof. Greg J. Towers (University College London) for the p8.91 G89V plasmid, and Ms. Huan Chen (Kunming Institute of Zoology) for the primers and probes used in qPCR. We thank the Kunming Primate Research Center, Chinese Academy of Sciences, for providing macaque samples. This work was supported by grants from the National Natural Science Foundation of China (81471620, 81671627, 81571606, 81172876, U0832601), the 13th Five-Year Key Scientific and Technological Program of China (2017ZX10304402-002-004, 2017ZX10202102-001-005), the Knowledge Innovation Program of the Chinese Academy of Sciences (KJZD-EW-L10-02, KSCX2-EW-R-13), the National Key Research & Development Plan (2016YFC1201000), and the National Basic Research Program of China (2012CBA01305).


  1. Battivelli, E., Migraine, J., Lecossier, D., Matsuoka, S., Perez-Bercoff, D., Saragosti, S., Clavel, F., and Hance, A.J. (2011). Modulation of TRIM5a activity in human cells by alternatively spliced TRIM5 isoforms. J Virol 85, 7828–7835.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berthoux, L., Sebastian, S., Sayah, D.M., and Luban, J. (2005). Disruption of human TRIM5a antiviral activity by nonhuman primate orthologues. J Virol 79, 7883–7888.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bérubé, J., Bouchard, A., and Berthoux, L. (2007). Both TRIM5a and TRIMCyp have only weak antiviral activity in canine D17 cells. Retrovirology 4, 68.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brennan, G., Kozyrev, Y., and Hu, S.L. (2008). TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA 105, 3569–3574.CrossRefPubMedGoogle Scholar
  5. Cao, G., Nie, W.H., Liu, F.L., Kuang, Y.Q., Wang, J.H., Su, W.T., and Zheng, Y.T. (2011). Identification of the TRIM5/TRIMCyp heterozygous genotype in Macaca assamensis. Zool Res 32, 40–49.PubMedGoogle Scholar
  6. Diaz-Griffero, F., Kar, A., Lee, M., Stremlau, M., Poeschla, E., and Sodroski, J. (2007). Comparative requirements for the restriction of retrovirus infection by TRIM5a and TRIMCyp. Virology 369, 400–410.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Diaz-Griffero, F., Vandegraaff, N., Li, Y., McGee-Estrada, K., Stremlau, M., Welikala, S., Si, Z., Engelman, A., and Sodroski, J. (2006). Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1. Virology 351, 404–419.CrossRefPubMedGoogle Scholar
  8. Dietrich, E.A., Brennan, G., Ferguson, B., Wiseman, R.W., O’Connor, D., and Hu, S.L. (2011). Variable prevalence and functional diversity of the antiretroviral restriction factor TRIMCyp in Macaca fascicularis. J Virol 85, 9956–9963.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fletcher, A.J., Christensen, D.E., Nelson, C., Tan, C.P., Schaller, T., Lehner, P.J., Sundquist, W.I., and Towers, G.J. (2015). TRIM5a requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription. EMBO J 34, 2078–2095.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gamble, T.R., Vajdos, F.F., Yoo, S., Worthylake, D.K., Houseweart, M., Sundquist, W.I., and Hill, C.P. (1996). Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294.CrossRefPubMedGoogle Scholar
  11. Ganser-Pornillos, B.K., Chandrasekaran, V., Pornillos, O., Sodroski, J.G., Sundquist, W.I., and Yeager, M. (2011). Hexagonal assembly of a restricting TRIM5a protein. Proc Natl Acad Sci USA 108, 534–539.CrossRefPubMedGoogle Scholar
  12. Goldstone, D.C., Walker, P.A., Calder, L.J., Coombs, P.J., Kirkpatrick, J., Ball, N.J., Hilditch, L., Yap, M.W., Rosenthal, P.B., Stoye, J.P., et al. (2014). Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci USA 111, 9609–9614.CrossRefPubMedGoogle Scholar
  13. Kim, J., Tipper, C., and Sodroski, J. (2011). Role of TRIM5a RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus. J Virol 85, 8116–8132.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kuang, Y.Q., Tang, X., Liu, F.L., Jiang, X.L., Zhang, Y.P., Gao, G., and Zheng, Y.T. (2009). Genotyping of TRIM5 locus in northern pig-tailed macaques (Macaca leonina), a primate species susceptible to Human Immunodeficiency Virus type 1 infection. Retrovirology 6, 58.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li, X., Kim, J., Song, B., Finzi, A., Pacheco, B., and Sodroski, J. (2013). Virus-specific effects of TRIM5arh RING domain functions on restriction of retroviruses. J Virol 87, 7234–7245.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li, X., and Sodroski, J. (2008). The TRIM5a B-Box 2 domain promotes cooperative binding to the retroviral capsid by mediating higher-order self-association. J Virol 82, 11495–11502.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liao, C.H., Kuang, Y.Q., Liu, H.L., Zheng, Y.T., and Su, B. (2007). A novel fusion gene, TRIM5-Cyclophilin A in the pig-tailed macaque determines its susceptibility to HIV-1 infection. AIDS 21, S19–S26.CrossRefPubMedGoogle Scholar
  18. Lienlaf, M., Hayashi, F., Di Nunzio, F., Tochio, N., Kigawa, T., Yokoyama, S., and Diaz-Griffero, F. (2011). Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5arh: Structure of the RING domain of TRIM5a. J Virol 85, 8725–8737.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lin, T.Y., and Emerman, M. (2008). Determinants of cyclophilin A-dependent TRIM5a restriction against HIV-1. Virology 379, 335–341.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liu, F.L., Kuang, Y.Q., Mu, D., Zheng, H.Y., Zhu, J.W., and Zheng, Y.T. (2015). The effect of exon 7 deletion during the evolution of TRIMCyp fusion proteins on viral restriction, cytoplasmic body formation and multimerization. PLoS ONE 10, e0121666.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Luban, J., Bossolt, K.L., Franke, E.K., Kalpana, G.V., and Goff, S.P. (1993). Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell 73, 1067–1078.CrossRefPubMedGoogle Scholar
  22. Malfavon-Borja, R., Wu, L.I., Emerman, M., and Singh Malik, H. (2013). Birth, decay, and reconstruction of an ancient TRIMCyp gene fusion in primate genomes. Proc Natl Acad Sci USA 110, E583–E592.CrossRefPubMedGoogle Scholar
  23. Mbisa, J.L., Delviks-Frankenberry, K.A., Thomas, J.A., Gorelick, R.J., and Pathak, V.K. (2009). Real-time PCR analysis of HIV-1 replication postentry events. Methods Mol Biol 485, 55–72.CrossRefPubMedGoogle Scholar
  24. McEwan, W.A., Schaller, T., Ylinen, L.M., Hosie, M.J., Towers, G.J., and Willett, B.J. (2009). Truncation of TRIM5 in the Feliformia explains the absence of retroviral restriction in cells of the domestic cat. J Virol 83, 8270–8275.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mu, D., Yang, H., Zhu, J.W., Liu, F.L., Tian, R.R., Zheng, H.Y., Han, J.B., Shi, P., and Zheng, Y.T. (2014). Independent birth of a novel TRIMCyp in Tupaia belangeri with a divergent function from its paralog TRIM5. Mol Biol Evol 31, 2985–2997.CrossRefPubMedGoogle Scholar
  26. Nakayama, E.E., Maegawa, H., and Shioda, T. (2006). A dominant-negative effect of cynomolgus monkey tripartite motif protein TRIM5a on anti-simian immunodeficiency virus SIVmac activity of an African green monkey orthologue. Virology 350, 158–163.CrossRefPubMedGoogle Scholar
  27. Newman, R.M., Hall, L., Kirmaier, A., Pozzi, L.A., Pery, E., Farzan, M., O’Neil, S.P., and Johnson, W. (2008). Evolution of a TRIM5-CypA splice isoform in Old World monkeys. PLoS Pathog 4, e1000003.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nisole, S., Lynch, C., Stoye, J.P., and Yap, M.W. (2004). A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA 101, 13324–13328.CrossRefPubMedGoogle Scholar
  29. Ohkura, S., Yap, M.W., Sheldon, T., and Stoye, J.P. (2006). All three variable regions of the TRIM5a B30.2 domain can contribute to the specificity of retrovirus restriction. J Virol 80, 8554–8565.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Perez-Caballero, D., Hatziioannou, T., Yang, A., Cowan, S., and Bieniasz, P.D. (2005). Human tripartite motif 5a domains responsible for retrovirus restriction activity and specificity. J Virology 79, 8969–8978.CrossRefPubMedGoogle Scholar
  31. Perron, M.J., Stremlau, M., Song, B., Ulm, W., Mulligan, R.C., and Sodroski, J. (2004). TRIM5a mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci USA 101, 11827–11832.CrossRefPubMedGoogle Scholar
  32. Price, A.J., Marzetta, F., Lammers, M., Ylinen, L.M.J., Schaller, T., Wilson, S.J., Towers, G.J., and James, L.C. (2009). Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct Mol Biol 16, 1036–1042.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Reynolds, M.R., Sacha, J.B., Weiler, A.M., Borchardt, G.J., Glidden, C.E., Sheppard, N.C., Norante, F.A., Castrovinci, P.A., Harris, J.J., Robertson, H.T., et al. (2011). The TRIM5a genotype of rhesus macaques affects acquisition of simian immunodeficiency virus SIVsmE660 infection after repeated limiting-dose intrarectal challenge. J Virol 85, 9- 637–9640.CrossRefGoogle Scholar
  34. Roa, A., Hayashi, F., Yang, Y., Lienlaf, M., Zhou, J., Shi, J., Watanabe, S., Kigawa, T., Yokoyama, S., Aiken, C., et al. (2012). RING domain mutations uncouple TRIM5a restriction of HIV-1 from inhibition of reverse transcription and acceleration of uncoating. J Virol 86, 1717–1727.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sanchez, J.G., Okreglicka, K., Chandrasekaran, V., Welker, J.M., Sundquist, W.I., and Pornillos, O. (2014). The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc Natl Acad Sci USA 111, 2494–2499.CrossRefPubMedGoogle Scholar
  36. Sawyer, S.L., Wu, L.I., Emerman, M., and Malik, H.S. (2005). Positive selection of primate TRIM5a identifies a critical species-specific retroviral restriction domain. Proc Natl Acad Sci USA 102, 2832–2837.CrossRefPubMedGoogle Scholar
  37. Sayah, D.M., Sokolskaja, E., Berthoux, L., and Luban, J. (2004). Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573.CrossRefPubMedGoogle Scholar
  38. Stremlau, M., Owens, C.M., Perron, M.J., Kiessling, M., Autissier, P., and Sodroski, J. (2004). The cytoplasmic body component TRIM5a restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853.CrossRefPubMedGoogle Scholar
  39. Virgen, C.A., Kratovac, Z., Bieniasz, P.D., and Hatziioannou, T. (2008). Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proc Natl Acad Sci USA 105, 3563–3568.CrossRefPubMedGoogle Scholar
  40. Wilson, S.J., Webb, B.L.J., Maplanka, C., Newman, R.M., Verschoor, E.J., Heeney, J.L., and Towers, G.J. (2008a). Rhesus macaque TRIM5 alleles have divergent antiretroviral specificities. J Virol 82, 7243–7247.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wilson, S.J., Webb, B.L.J., Ylinen, L.M.J., Verschoor, E., Heeney, J.L., and Towers, G.J. (2008b). Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc Natl Acad Sci USA 105, 3557–3562.CrossRefPubMedGoogle Scholar
  42. Yap, M.W., Dodding, M.P., and Stoye, J.P. (2006). Trim-cyclophilin A fusion proteins can restrict human immunodeficiency virus type 1 infection at two distinct phases in the viral life cycle. J Virol 80, 4061–4067.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Yap, M.W., Nisole, S., Lynch, C., and Stoye, J.P. (2004). Trim5a protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci USA 101, 10786–10791.CrossRefPubMedGoogle Scholar
  44. Ylinen, L.M.J., Keckesova, Z., Wilson, S.J., Ranasinghe, S., and Towers, G.J. (2005). Differential restriction of human immunodeficiency virus type 2 and simian immunodeficiency virus SIVmac by TRIM5a alleles. J Virol 79, 11580–11587.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ylinen, L.M.J., Price, A.J., Rasaiyaah, J., Hué, S., Rose, N.J., Marzetta, F., James, L.C., and Towers, G.J. (2010). Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity. PLoS Pathog 6, e1001062.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dan Mu
    • 1
    • 2
  • Jia-Wu Zhu
    • 1
    • 2
  • Feng-Liang Liu
    • 1
  • Hong-Yi Zheng
    • 1
  • Yong-Tang Zheng
    • 1
    • 2
    • 3
    Email author
  1. 1.Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingChina
  2. 2.Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
  3. 3.Kunming Primate Research CenterChinese Academy of SciencesKunmingChina

Personalised recommendations