Advertisement

Science China Life Sciences

, Volume 61, Issue 11, pp 1333–1351 | Cite as

The impact of multi-walled carbon nanotubes (MWCNTs) on macrophages: contribution of MWCNT characteristics

  • Yinghe Li
  • Jimin CaoEmail author
Review
  • 49 Downloads

Abstract

Multi-walled carbon nanotubes (MWCNTs) have wide application prospects but also exhibit notable biotoxicity that is tightly associated with macrophages. Macrophages simultaneously act as initiators and defenders in MWCNT-induced organ lesions, and targeting macrophages with MWCNTs may be a potential immunotherapy and oncotherapy approach. This review focuses on the impacts of MWCNTs on macrophages and further discusses the influence of MWCNT characteristics on their bioactivity. Based on existing studies, MWCNTs stimulate macrophage migration, induce secretion of various cytokines and activate inflammatory pathways in macrophages, especially NLRP3-mediated IL-1β production. This inflammatory state, together with the oxidative stress and cell membrane lesions induced by MWCNTs, contributes to decreased phagocytic ability and cell viability, which finally results in cell apoptosis and necrosis. A series of intracellular and systemic components, such as toll-like receptor, high-mobility group box 1, Rho-associated kinases, scavenger receptor and complement components, may be involved in the above-mentioned cell-MWCNT interactions. The characteristics of MWCNTs can influence their bioactivity in macrophages both mechanically and chemically. The size (length and/or diameter), functionalization, purification and even the experimental method can affect the influence of MWCNTs on macrophages, and a better understanding of these MWCNT characteristics may benefit utilization of this nanomaterial in associated nanomedical applications.

Keywords

carbon nanotube macrophage nanotoxicology nanomedicine immunity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-004) and the National Key Research and Development Project from the Ministry of Science and Technology, China (2017YFA0205500).

References

  1. Aiso, S., Yamazaki, K., Umeda, Y., Asakura, M., Kasai, T., Takaya, M., Toya, T., Koda, S., Nagano, K., Arito, H., et al. (2010). Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male fischer 344 rats. Ind Health 48, 783–795.CrossRefPubMedGoogle Scholar
  2. Al-Jamal, K.T., Nerl, H., Müller, K.H., Ali-Boucetta, H., Li, S., Haynes, P. D., Jinschek, J.R., Prato, M., Bianco, A., Kostarelos, K., et al. (2011). Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3, 2627–2635.CrossRefPubMedGoogle Scholar
  3. Awasthi, K.K., John, P.J., Awasthi, A., and Awasthi, K. (2013). Multi walled carbon nano tubes induced hepatotoxicity in Swiss albino mice. Micron 44, 359–364.CrossRefPubMedGoogle Scholar
  4. Boncel, S., Müller, K.H., Skepper, J.N., Walczak, K.Z., and Koziol, K.K.K. (2011). Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials 32, 7677–7686.CrossRefPubMedGoogle Scholar
  5. Bonner, J.C. (2010). Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thoracic Soc 7, 138–141.CrossRefGoogle Scholar
  6. Boyles, M.S.P., Young, L., Brown, D.M., MacCalman, L., Cowie, H., Moisala, A., Smail, F., Smith, P.J.W., Proudfoot, L., Windle, A.H., et al. (2015). Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol In Vitro 29, 1513–1528.CrossRefPubMedGoogle Scholar
  7. Brown, D.M., Kinloch, I.A., Bangert, U., Windle, A.H., Walter, D.M., Walker, G.S., Scotchford, C.A., Donaldson, K., and Stone, V. (2007). An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45, 1743–1756.CrossRefGoogle Scholar
  8. Brown, D.M., Donaldson, K., and Stone, V. (2010). Nuclear translocation of Nrf2 and expression of antioxidant defence genes in THP-1 cells exposed to carbon nanotubes. J Biomed Nanotechnol 6, 224–233.CrossRefPubMedGoogle Scholar
  9. Bussy, C., Pinault, M., Cambedouzou, J., Landry, M.J., Jegou, P., Mayne-L’hermite, M., Launois, P., Boczkowski, J., and Lanone, S. (2012). Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part Fibre Toxicol 9, 46.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bussy, C., Hadad, C., Prato, M., Bianco, A., and Kostarelos, K. (2016). Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale 8, 590–601.CrossRefPubMedGoogle Scholar
  11. Cesta, M.F., Ryman-Rasmussen, J.P., Wallace, D.G., Masinde, T., Hurlburt, G., Taylor, A.J., and Bonner, J.C. (2010). Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol 43, 142–151.CrossRefPubMedGoogle Scholar
  12. Chen, H., Shen, J., Longhua, G., Chen, Y., and Kim, D.H. (2011). Cellular response of RAW 264.7 to spray-coated multi-walled carbon nanotube films with various surfactants. J Biomed Mater Res 96A, 413–421.CrossRefGoogle Scholar
  13. Cheng, C., Müller, K.H., Koziol, K.K.K., Skepper, J.N., Midgley, P.A., Welland, M.E., and Porter, A.E. (2009). Toxicity and imaging of multiwalled carbon nanotubes in human macrophage cells. Biomaterials 30, 4152–4160.CrossRefPubMedGoogle Scholar
  14. De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., and Hart, A.J. (2013). Carbon nanotubes: present and future commercial applications. Science 339, 535–539.CrossRefPubMedGoogle Scholar
  15. Deng, X., Xiong, D., Wang, Y., Chen, W., Luan, Q., Zhang, H., Jiao, Z., and Wu, M. (2010). Water soluble multi-walled carbon nanotubes enhance peritoneal macrophage activity in vivo. J Nanosci Nanotech 10, 8663–8669.CrossRefGoogle Scholar
  16. Di Giorgio, M.L., Di Bucchianico, S., Ragnelli, A.M., Aimola, P., Santucci, S., and Poma, A. (2011). Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res 722, 20–31.CrossRefPubMedGoogle Scholar
  17. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G., and Alexander, A. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92, 5–22.CrossRefPubMedGoogle Scholar
  18. Donaldson, K., Murphy, F.A., Duffin, R., and Poland, C.A. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Elgrabli, D., Abella-Gallart, S., Robidel, F., Rogerieux, F., Boczkowski, J., and Lacroix, G. (2008). Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbonnanotubes. Toxicology 253, 131–136.CrossRefPubMedGoogle Scholar
  20. Elgrabli, D., Dachraoui, W., Ménard-Moyon, C., Liu, X.J., Bégin, D., Bégin-Colin, S., Bianco, A., Gazeau, F., and Alloyeau, D. (2015). Carbon nanotube degradation in macrophages: live nanoscale monitoring and understanding of biological pathway. ACS Nano 9, 10113–10124.CrossRefPubMedGoogle Scholar
  21. Ema, M., Masumori, S., Kobayashi, N., Naya, M., Endoh, S., Maru, J., Hosoi, M., Uno, F., Nakajima, M., Hayashi, M., et al. (2013). In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol 33, 1053–1060.CrossRefPubMedGoogle Scholar
  22. Fenoglio, I., Aldieri, E., Gazzano, E., Cesano, F., Colonna, M., Scarano, D., Mazzucco, G., Attanasio, A., Yakoub, Y., Lison, D., et al. (2012). Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 25, 74–82.CrossRefPubMedGoogle Scholar
  23. Fraczek-Szczypta, A., Menaszek, E., Syeda, T.B., Misra, A., Alavijeh, M., Adu, J., and Blazewicz, S. (2012). Effect of MWCNT surface and chemical modification on in vitro cellular response. J Nanopart Res 14, 1181.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Francis, A.P., Ganapathy, S., Palla, V.R., Murthy, P.B., Ramaprabhu, S., and Devasena, T. (2015). One time nose-only inhalation of MWCNTs: exploring the mechanism of toxicity by intermittent sacrifice in Wistar rats. Toxicol Rep 2, 111–120.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Funahashi, S., Okazaki, Y., Ito, D., Asakawa, A., Nagai, H., Tajima, M., and Toyokuni, S. (2015). Asbestos and multi-walled carbon nanotubes generate distinct oxidative responses in inflammatory cells. J Clin Biochem Nutr 56, 111–117.CrossRefPubMedGoogle Scholar
  26. Gasser, M., Wick, P., Clift, M.J.D., Blank, F., Diener, L., Yan, B., Gehr, P., Krug, H.F., and Rothen-Rutishauser, B. (2012). Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Part Fibre Toxicol 9, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goode, A.E., Gonzalez Carter, D.A., Motskin, M., Pienaar, I.S., Chen, S., Hu, S., Ruenraroengsak, P., Ryan, M.P., Shaffer, M.S.P., Dexter, D.T., et al. (2015). High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells. Biomaterials 70, 57–70.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Grecco, A.C., Paula, R.F., Mizutani, E., Sartorelli, J.C., Milani, A.M., Longhini, A.L., Oliveira, E.C., Pradella, F., Silva, V.D., Moraes, A.S., et al. (2011). Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes. Nanotechnology 22, 265103.CrossRefPubMedGoogle Scholar
  29. Gupta, R., Mehra, N.K., and Jain, N.K. (2014). Fucosylated multiwalled carbon nanotubes for Kupffer cells targeting for the treatment of cytokine-induced liver damage. Pharm Res 31, 322–334.CrossRefPubMedGoogle Scholar
  30. Hamilton, R.F.Jr., Buford, M., Xiang, C., Wu, N., and Holian, A. (2012). NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 24, 995–1008.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hamilton, R.F., Wu, Z., Mitra, S., Shaw, P.K., and Holian, A. (2013). Effect of MWCNT size, carboxylation, and purification on in vitro and in vivo toxicity, inflammation and lung pathology. Part Fibre Toxicol 10, 57.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haniu, H., Matsuda, Y., Takeuchi, K., Kim, Y.A., Hayashi, T., and Endo, M. (2010). Proteomics-based safety evaluation of multi-walled carbon nanotubes. Toxicol Appl Pharmacol 242, 256–262.CrossRefPubMedGoogle Scholar
  33. He, X., Young, S.H., Schwegler-Berry, D., Chisholm, W.P., Fernback, J.E., and Ma, Q. (2011). Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol 24, 2237–2248.CrossRefPubMedGoogle Scholar
  34. Hirano, S., Kanno, S., and Furuyama, A. (2008). Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232, 244–251.CrossRefPubMedGoogle Scholar
  35. Hirano, S., Fujitani, Y., Furuyama, A., and Kanno, S. (2012). Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells. Toxicol Appl Pharmacol 259, 96–103.CrossRefPubMedGoogle Scholar
  36. Jain, K.K. (2012). Advances in use of functionalized carbon nanotubes for drug design and discovery. Expert Opin Drug Discov 7, 1029–1037.CrossRefPubMedGoogle Scholar
  37. Jessop, F., and Holian, A. (2015). Extracellular HMGB1 regulates multiwalled carbon nanotube-induced inflammation in vivo. Nanotoxicology 9, 365–372.CrossRefPubMedGoogle Scholar
  38. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X. (2005). Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39, 1378–13-83.CrossRefPubMedGoogle Scholar
  39. Jiang, Y., Zhang, H., Wang, Y., Chen, M., Ye, S., Hou, Z., and Ren, L. (2013). Modulation of apoptotic pathways of macrophages by surfacefunctionalized multi-walled carbon nanotubes. PLoS ONE 8, e65756.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Johnston, H.J., Hutchison, G.R., Christensen, F.M., Peters, S., Hankin, S., Aschberger, K., and Stone, V. (2010). A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4, 207–246.CrossRefPubMedGoogle Scholar
  41. Kanno, S., Hirano, S., Chiba, S., Takeshita, H., Nagai, T., Takada, M., Sakamoto, K., and Mukai, T. (2015). The role of Rho-kinases in IL-1β release through phagocytosis of fibrous particles in human monocytes. Arch Toxicol 89, 73–85.CrossRefPubMedGoogle Scholar
  42. Kateb, B., Van Handel, M., Zhang, L., Bronikowski, M.J., Manohara, H., and Badie, B. (2007). Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage 37, S9–S17.CrossRefPubMedGoogle Scholar
  43. Kido, T., Tsunoda, M., Kasai, T., Sasaki, T., Umeda, Y., Senoh, H., Yanagisawa, H., Asakura, M., Aizawa, Y., and Fukushima, S. (2014). The increases in relative mRNA expressions of inflammatory cytokines and chemokines in splenic macrophages from rats exposed to multi-walled carbon nanotubes by whole-body inhalation for 13 weeks. Inhal Toxicol 26, 750–758.CrossRefPubMedGoogle Scholar
  44. Klaper, R., Arndt, D., Setyowati, K., Chen, J., and Goetz, F. (2010). Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 100, 211–217.CrossRefPubMedGoogle Scholar
  45. Kobzik, L. (1995). Lung macrophage uptake of unopsonized environmental particulates. Role of scavenger-type receptors. J Immunol 155, 367–376.PubMedGoogle Scholar
  46. Kotchey, G.P., Hasan, S.A., Kapralov, A.A., Ha, S.H., Kim, K., Shvedova, A.A., Kagan, V.E., and Star, A. (2012). A natural vanishing act: the enzyme-catalyzed degradation of carbon nanomaterials. Acc Chem Res 45, 1770–1781.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kumarathasan, P., Breznan, D., Das, D., Salam, M.A., Siddiqui, Y., Mac-Kinnon-Roy, C., Guan, J., de Silva, N., Simard, B., and Vincent, R. (2015). Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells. Nanotoxicology 9, 148–161.CrossRefPubMedGoogle Scholar
  48. Lacerda, L., Russier, J., Pastorin, G., Herrero, M.A., Venturelli, E., Dumortier, H., Al-Jamal, K.T., Prato, M., Kostarelos, K., and Bianco, A. (2012). Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials 33, 3334–3343.CrossRefPubMedGoogle Scholar
  49. Lee, J.K., Sayers, B.C., Chun, K.S., Lao, H.C., Shipley-Phillips, J.K., Bonner, J.C., and Langenbach, R. (2012). Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and-independent mechanisms in mouse RAW264.7 macrophages. Part Fibre Toxicol 9, 14.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li, H., Tan, X.Q., Yan, L., Zeng, B., Meng, J., Xu, H.Y., and Cao, J.M. (2017). Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway. Sci Rep 7, 226.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Liu, D., Wang, L., Wang, Z., and Cuschieri, A. (2012). Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res Lett 7, 361.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Luo, M., Deng, X., Shen, X., Dong, L., and Liu, Y. (2012). Comparison of cytotoxicity of pristine and covalently functionalized multi-walled carbon nanotubes in RAW 264.7 macrophages. J Nanosci Nanotech 12, 274–283.CrossRefGoogle Scholar
  53. Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A.O., van Ravenzwaay, B., and Landsiedel, R. (2009). Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 112, 468–481.CrossRefPubMedGoogle Scholar
  54. Meng, J., Yang, M., Jia, F., Kong, H., Zhang, W., Wang, C., Xing, J., Xie, S., and Xu, H. (2010). Subcutaneous injection of water-soluble multiwalled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology 21, 145104.CrossRefPubMedGoogle Scholar
  55. Meng, J., Li, X., Wang, C., Guo, H., Liu, J., and Xu, H. (2015). Carbon nanotubes activate macrophages into a M1/M2 mixed status: recruiting naïve macrophages and supporting angiogenesis. ACS Appl Mater Interf 7, 3180–3188.CrossRefGoogle Scholar
  56. Mercer, R.R., Hubbs, A.F., Scabilloni, J.F., Wang, L., Battelli, L.A., Friend, S., Castranova, V., and Porter, D.W. (2011). Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 8, 21.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mercer, R.R., Scabilloni, J.F., Hubbs, A.F., Battelli, L.A., McKinney, W., Friend, S., Wolfarth, M.G., Andrew, M., Castranova, V., and Porter, D. W. (2013). Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol 10, 33.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Meunier, E., Coste, A., Olagnier, D., Authier, H., Lefèvre, L., Dardenne, C., Bernad, J., Béraud, M., Flahaut, E., and Pipy, B. (2012). Double-walled carbon nanotubes trigger IL-1β release in human monocytes through Nlrp3 inflammasome activation. Nanomedicine 8, 987–995.CrossRefPubMedGoogle Scholar
  59. Møller, P., Christophersen, D.V., Jensen, D.M., Kermanizadeh, A., Roursgaard, M., Jacobsen, N.R., Hemmingsen, J.G., Danielsen, P.H., Cao, Y., Jantzen, K., et al. (2014). Role of oxidative stress in carbon nanotubegenerated health effects. Arch Toxicol 88, 1939–1964.CrossRefPubMedGoogle Scholar
  60. Morimoto, Y., Hirohashi, M., Ogami, A., Oyabu, T., Myojo, T., Todoroki, M., Yamamoto, M., Hashiba, M., Mizuguchi, Y., Lee, B.W., et al. (2012). Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology 6, 587–599.CrossRefPubMedGoogle Scholar
  61. Mossman, B.T., and Churg, A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157, 1666–1680.CrossRefPubMedGoogle Scholar
  62. Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J.F., Delos, M., Arras, M., Fonseca, A., Nagy, J.B., and Lison, D. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207, 221–231.CrossRefPubMedGoogle Scholar
  63. Murphy, F.A., Schinwald, A., Poland, C.A., and Donaldson, K. (2012). The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify proinflammatory responses in mesothelial cells. Part Fibre Toxicol 9, 8.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Nagai, H., Okazaki, Y., Hwu Chew, S., Misawa, N., Yamashita, Y., Akatsuka, S., Ishihara, T., Yamashita, K., Yoshikawa, Y., Yasui, H., et al. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA 108, e1330–E1338.CrossRefPubMedGoogle Scholar
  65. Palomäki, J., Välimäki, E., Sund, J., Vippola, M., Clausen, P.A., Jensen, K. A., Savolainen, K., Matikainen, S., and Alenius, H. (2011). Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano 5, 6861–6870.CrossRefPubMedGoogle Scholar
  66. Palomäki, J., Sund, J., Vippola, M., Kinaret, P., Greco, D., Savolainen, K., Puustinen, A., and Alenius, H. (2015). A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes. Nanotoxicology 9, 719–728.CrossRefPubMedGoogle Scholar
  67. Pondman, K.M., Sobik, M., Nayak, A., Tsolaki, A.G., Jäkel, A., Flahaut, E., Hampel, S., Ten Haken, B., Sim, R.B., and Kishore, U. (2014). Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine 10, 1287–1299.CrossRefPubMedGoogle Scholar
  68. Pondman, K.M., Pednekar, L., Paudyal, B., Tsolaki, A.G., Kouser, L., Khan, H.A., Shamji, M.H., Ten Haken, B., Stenbeck, G., Sim, R.B., et al. (2015). Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes. Nanomedicine 11, 2109–2118.CrossRefPubMedGoogle Scholar
  69. Pulskamp, K., Diabaté, S., and Krug, H.F. (2007). Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168, 58–74.CrossRefPubMedGoogle Scholar
  70. Qu, C., Wang, L., He, J., Tan, J., Liu, W., Zhang, S., Zhang, C., Wang, Z., Jiao, S., Liu, S., et al. (2012). Carbon nanotubes provoke inflammation by inducing the pro-inflammatory genes IL-1β and IL-6. Gene 493, 9–12.CrossRefPubMedGoogle Scholar
  71. Rydman, E.M., Ilves, M., Koivisto, A.J., Kinaret, P.A.S., Fortino, V., Savinko, T.S., Lehto, M.T., Pulkkinen, V., Vippola, M., Hämeri, K.J., et al. (2014). Inhalation of rod-like carbon nanotubes causes unconventional allergic airway inflammation. Part Fibre Toxicol 11, 48.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Saïd-Sadier, N., and Ojcius, D.M. (2012). Alarmins, inflammasomes and immunity. Biomed J 35, 437–449.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Saito, N., Usui, Y., Aoki, K., Narita, N., Shimizu, M., Hara, K., Ogiwara, N., Nakamura, K., Ishigaki, N., Kato, H., et al. (2009). Carbon nanotubes: biomaterial applications. Chem Soc Rev 38, 1897–1903.CrossRefPubMedGoogle Scholar
  74. Sato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Kohgo, T., Tamura, K., Akasaka, T., Uo, M., et al. (2005). Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol Biosyst 1, 176–182.CrossRefPubMedGoogle Scholar
  75. Sato, Y., Yokoyama, A., Nodasaka, Y., Kohgo, T., Motomiya, K., Matsumoto, H., Nakazawa, E., Numata, T., Zhang, M., Yudasaka, M., et al. (2013). Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci Rep 3, 2516.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shimizu, K., Uchiyama, A., Yamashita, M., Hirose, A., Nishimura, T., and Oku, N. (2013). Biomembrane damage caused by exposure to multiwalled carbon nanotubes. J Toxicol Sci 38, 7–12.CrossRefPubMedGoogle Scholar
  77. Shipkowski, K.A., Taylor, A.J., Thompson, E.A., Glista-Baker, E.E., Sayers, B.C., Messenger, Z.J., Bauer, R.N., Jaspers, I., and Bonner, J.C. (2014). An allergic lung microenvironment suppresses carbon nanotube-induced inflammasome activation via STAT6-dependent inhibition of caspase-1. PLoS ONE 10, e0128888.CrossRefGoogle Scholar
  78. Sun, B., Wang, X., Ji, Z., Wang, M., Liao, Y.P., Chang, C.H., Li, R., Zhang, H., Nel, A.E., and Xia, T. (2015). NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small 11, 2087–2097.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sweeney, S., Berhanu, D., Misra, S.K., Thorley, A.J., Valsami-Jones, E., and Tetley, T.D. (2014). Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. Carbon 78, 26–37.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tabet, L., Bussy, C., Setyan, A., Simon-Deckers, A., Rossi, M.J., Boczkowski, J., and Lanone, S. (2011). Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part Fibre Toxicol 8, 3.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Taylor, A.J., McClure, C.D., Shipkowski, K.A., Thompson, E.A., Hussain, S., Garantziotis, S., Parsons, G.N., and Bonner, J.C. (2014). Atomic layer deposition coating of carbon nanotubes with aluminum oxide alters pro-fibrogenic cytokine expression by human mononuclear phagocytes in vitro and reduces lung fibrosis in mice in vivo. PLoS ONE 9, e106870.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thayer, A.M. (2007). Carbon nanotubes by the metric ton. Chem Eng News 85, 29–35.CrossRefGoogle Scholar
  83. Treumann, S., Ma-Hock, L., Gröters, S., Landsiedel, R., and van Ravenzwaay, B. (2013). Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats. Toxicol Sci 134, 103–110.CrossRefPubMedGoogle Scholar
  84. Umeda, Y., Kasai, T., Saito, M., Kondo, H., Toya, T., Aiso, S., Okuda, H., Nishizawa, T., and Fukushima, S. (2013). Two-week toxicity of multiwalled carbon nanotubes by whole-body inhalation exposure in rats. J Toxicol Pathol 26, 131–140.CrossRefPubMedPubMedCentralGoogle Scholar
  85. van Berlo, D., Wilhelmi, V., Boots, A.W., Hullmann, M., Kuhlbusch, T.A. J., Bast, A., Schins, R.P.F., and Albrecht, C. (2014). Apoptotic, inflammatory, and fibrogenic effects of two different types of multi-walled carbon nanotubes in mouse lung. Arch Toxicol 88, 1725–1737.CrossRefPubMedGoogle Scholar
  86. VanHandel, M., Alizadeh, D., Zhang, L., Kateb, B., Bronikowski, M., Manohara, H., and Badie, B. (2009). Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 208, 3–9.CrossRefPubMedGoogle Scholar
  87. Wang, X., Jia, G., Wang, H., Nie, H., Yan, L., Deng, X.Y., and Wang, S. (2009). Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J Nanosci Nanotechnol 9, 3025–3033.CrossRefPubMedGoogle Scholar
  88. Wang, X., Xia, T., Addo Ntim, S., Ji, Z., Lin, S., Meng, H., Chung, C.H., George, S., Zhang, H., Wang, M., et al. (2011). Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. ACS Nano 5, 9772–9787.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wang, X., Guo, J., Chen, T., Nie, H., Wang, H., Zang, J., Cui, X., and Jia, G. (2012). Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro 26, 799–806.CrossRefPubMedGoogle Scholar
  90. Wörle-Knirsch, J.M., Pulskamp, K., and Krug, H.F. (2006). Oops they did it again! carbon nanotubes hoax scientists in viability assays. Nano Lett 6, 1261–1268.CrossRefPubMedGoogle Scholar
  91. Xia, T., Hamilton Jr., R.F., Bonner, J.C., Crandall, E.D., Elder, A., Fazlollahi, F., Girtsman, T.A., Kim, K., Mitra, S., Ntim, S.A., et al. (2013). Interlaboratory evaluation of in vitro cytotoxicity and inflammatory responses to engineered nanomaterials: the NIEHS nano GO consortium. Environ Health Perspect 121, 683–690.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Xu, J., Futakuchi, M., Shimizu, H., Alexander, D.B., Yanagihara, K., Fukamachi, K., Suzui, M., Kanno, J., Hirose, A., Ogata, A., et al. (2012). Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci 103, 2045–2050.CrossRefPubMedGoogle Scholar
  93. Yang, M., Meng, J., Cheng, X., Lei, J., Guo, H., Zhang, W., Kong, H., and Xu, H. (2012). Multiwalled carbon nanotubes interact with macrophages and influence tumor progression and metastasis. Theranostics 2, 258–270.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Ye, S., Wang, Y., Jiao, F., Zhang, H., Lin, C., Wu, Y., and Zhang, Q. (2011). The role of NADPH oxidase in multi-walled carbon nanotubes-induced oxidative stress and cytotoxicity in human macrophages. J Nanosci Nanotech 11, 3773–3781.CrossRefGoogle Scholar
  95. Ye, S., Jiang, Y., Zhang, H., Wang, Y., Wu, Y., Hou, Z., and Zhang, Q. (2012). Multi-walled carbon nanotubes induce apoptosis in RAW 264.7 cell-derived osteoclasts through mitochondria-mediated death pathway. J Nanosci Nanotechnol 12, 2101–2112.CrossRefPubMedGoogle Scholar
  96. Zhang, T., Tang, M., Kong, L., Li, H., Zhang, T., Zhang, S., Xue, Y., and Pu, Y. (2012). Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW264.7 mouse macrophages. J Hazard Mater 219–220, 203–212.CrossRefPubMedGoogle Scholar
  97. Zhang, T., Tang, M., Kong, L., Li, H., Zhang, T., Xue, Y., and Pu, Y. (2015). Surface modification of multiwall carbon nanotubes determines the pro-inflammatory outcome in macrophage. J Hazard Mater 284, 73–82.CrossRefPubMedGoogle Scholar
  98. Zhao, Y., Allen, B.L., and Star, A. (2011). Enzymatic degradation of multiwalled carbon nanotubes. J Phys Chem A 115, 9536–9544.CrossRefPubMedPubMedCentralGoogle Scholar
  99. Zhu, L., Schrand, A.M., Voevodin, A.A., Chang, D.W., Dai, L., and Hussain, S.M. (2011). Assessment of human lung macrophages after exposure to multi-walled carbon nanotubes part I. cytotoxicity. Nanosci Nanotechnol Lett 3, 88–93.CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medicine, Chinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
  2. 2.Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic MedicinePeking Union Medical CollegeBeijingChina
  3. 3.Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina

Personalised recommendations