Exome sequencing confirms molecular diagnoses in 38 Chinese families with hereditary spherocytosis

Research Paper

Abstract

Hereditary spherocytosis (HS), the most common cause of congenital hemolytic anemia, is caused by deficiency of the erythrocyte membrane proteins. Five causative genes (ANK1, SPTB, SPTA1, SLC4A1, and EPB42) have been identified. To date, molecular genetic studies have been performed in different populations, including the American, European, Brazilian, Japanese and Korean populations, whereas only a few studies have been described in the Chinese population. Here, by reanalysis of the exome data, we revealed causative mutations and established a definitive diagnosis of HS in all 38 Chinese families. We found 34 novel mutations and four reported mutations in three known HS-causing genes—17 in ANK1, 17 in SPTB and four in SLC4A1, suggesting that ANK1 and SPTB are the major genes in Chinese patients with HS. All of the ANK1 or SPTB mutations, scattered throughout the entire genes, are non-recurrent; and most of them are null mutations, which might cause HS via a haploinsufficiency mechanism. De novo mutations in ANK1 or SPTB often occur with an unexpected high frequency (87.5% and 64.2%, respectively). Our study updates our knowledge about the genetic profile of HS in Chinese and shows that family-based, especially parent-offspring trio, sequencing analysis can help to increase the diagnostic power and improve diagnostic efficiency.

Keywords

hereditary spherocytosis mutation ANK1 SPTB SLC4A1 whole-exome sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank all the individuals for their participation in this study. This work was supported by the National Key Research and Development Program of China (2016YFC0905100), the CAMS Innovation Fund for Medical Sciences (2016-I2M-1-002), the National Natural Science Foundation of China (NSFC) (81230015), the Beijing Municipal Science and Technology Commission (Z151100003915078), the Medical Science and Technology Research Projects of Henan Provincial Health Bureau (201601019) and the Scientific and Technological Projects of the Technology Bureau of Henan Provincial Technology (172102410010).

Supplementary material

11427_2017_9232_MOESM1_ESM.docx (342 kb)
Supplementary material, approximately 343 KB.

References

  1. Agarwal, A.M., Nussenzveig, R.H., Reading, N.S., Patel, J.L., Sangle, N., Salama, M.E., Prchal, J.T., Perkins, S.L., Yaish, H.M., and Christensen R.D. (2016). Clinical utility of next-generation sequencing in the diagnosis of hereditary haemolytic anaemias. Br J Haematol 174, 806–814.CrossRefPubMedGoogle Scholar
  2. An, X., and Mohandas, N. (2008). Disorders of red cell membrane. Br J Haematol 141, 367–375.PubMedGoogle Scholar
  3. Bassères, D.S., Vicentim, D.L., Costa, F.F., Saad, S.T., and Hassoun, H. (1998). Beta-spectrin Promiss-ao: a translation initiation codon mutation of the beta-spectrin gene (ATG→GTG) associated with hereditary spherocytosis and spectrin deficiency in a Brazilian family. Blood 91, 368–369.PubMedGoogle Scholar
  4. Becker, P.S., Tse, W.T., Lux, S.E., and Forget, B.G. (1993). Beta spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1. J Clin Invest 92, 612–616.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouhassira, E.E., Schwartz, R.S., Yawata, Y., Ata, K., Kanzaki, A., Qiu, J. J., Nagel, R.L., and Rybicki, A.C. (1992). An alanine-to-threonine substitution in protein 4.2 cDNA is associated with a Japanese form of hereditary hemolytic anemia (protein 4.2NIPPON). Blood 79, 1846–1854.PubMedGoogle Scholar
  6. Bruce, L.J., Cope, D.L., Jones, G.K., Schofield, A.E., Burley, M., Povey, S., Unwin, R.J., Wrong, O., and Tanner, M.J. (1997). Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100, 1693–1707.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Davies, K.A., and Lux, S.E. (1989). Hereditary disorders of the red cell membrane skeleton. Trends Genets 5, 222–227.CrossRefGoogle Scholar
  8. Delaunay, J. (2002). Molecular basis of red cell membrane disorders. Acta Haematol 108, 210–218.CrossRefPubMedGoogle Scholar
  9. Desmet, F.O., Hamroun, D., Lalande, M., Collod-Béroud, G., Claustres, M., and Béroud, C. (2009). Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37, e67–e67.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dhermy, D., Galand, C., Bournier, O., Boulanger, L., Cynober, T., Schismanoff, P.O., Bursaux, E., Tchernia, G., and Garbarz, M. (1997). Heterogenous band 3 deficiency in hereditary spherocytosis related to different band 3 gene defects. Br J Haematol 98, 32–40.CrossRefPubMedGoogle Scholar
  11. Eber, S.W., Gonzalez, J.M., Lux, M.L., Scarpa, A.L., Tse, W.T., Dornwell, M., Herbers, J., Kugler, W., Ozcan, R., Pekrun, A., et al. (1996). Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nat Genet 13, 214–218.CrossRefPubMedGoogle Scholar
  12. Gallagher, P.G., and Forget, B.G. (1993). Spectrin genes in health and disease. Semin Hematol 30, 4–20.PubMedGoogle Scholar
  13. Gallagher, P.G., and Forget, B.G. (1996). Hematologically important mutations: spectrin variants in hereditary elliptocytosis and hereditary pyropoikilocytosis. Blood Cells Mol Dis 22, 254–258.CrossRefPubMedGoogle Scholar
  14. Gallagher, P.G., and Forget, B.G. (1998). Hematologically important mutations: spectrin and ankyrin variants in hereditary spherocytosis. Blood Cells Mol Dis 24, 539–543.CrossRefPubMedGoogle Scholar
  15. Gallagher, P., and Lux, S. (2003). Disorders of the erythrocyte membrane. In: Nathan and Oski’s Hematology of Infancy and Childhood, D. Nathan, and S. Orkin, eds. (Philadelphia: Elsevier), pp. 560–684.Google Scholar
  16. Hassoun, H., Vassiliadis, J.N., Murray, J., Njolstad, P.R., Rogus, J.J., Ballas, S.K., Schaffer, F., Jarolim, P., Brabec, V., and Palek, J. (1997). Characterization of the underlying molecular defect in hereditary spherocytosis associated with spectrin deficiency. Blood 90, 398–406.PubMedGoogle Scholar
  17. Ioannidis, N.M., Rothstein, J.H., Pejaver, V., Middha, S., McDonnell, S.K., Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., et al. (2016). REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99, 877–885.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Iolascon, A., del Giudice, M.M., Camaschella, C., Pinto, L., Nobili, B., Perrotta, S., and Cutillo, S. (1991). Ankyrin deficiency in dominant hereditary spherocytosis: report of three cases. Br J Haematol 78, 551–554.CrossRefPubMedGoogle Scholar
  19. Jarolim, P., Palek, J., Rubin, H.L., Prchal, J.T., Korsgren, C., and Cohen, C. M. (1992). Band 3 Tuscaloosa: Pro327-Arg327 substitution in the cytoplasmic domain of erythrocyte band 3 protein associated with spherocytic hemolytic anemia and partial deficiency of protein 4.2. Blood 80, 523–529.PubMedGoogle Scholar
  20. Jarolim, P., Rubin, H.L., Brabec, V., Chrobak, L., Zolotarev, A.S., Alper, S. L., Brugnara, C., Wichterle, H., and Palek, J. (1995). Mutations of conserved arginines in the membrane domain of erythroid band 3 lead to a decrease in membrane-associated band 3 and to the phenotype of hereditary spherocytosis. Blood 85, 634–640.PubMedGoogle Scholar
  21. Jiang, M., Lu, J., Zhong, Y., Wang, Y., and Yang, C. (2016). Identification of a novel ANK1 gene mutation in a newborn with hereditary spherocytosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 33, 44–47.PubMedGoogle Scholar
  22. King, M.J., Garçon, L., Hoyer, J.D., Iolascon, A., Picard, V., Stewart, G., Bianchi, P., Lee, S.H., Zanella, A., and Zanella, A. (2015). ICSH guidelines for the laboratory diagnosis of nonimmune hereditary red cell membrane disorders. Int Jnl Lab Hem 37, 304–325.CrossRefGoogle Scholar
  23. Lambert, S., Yu, H., Prchal, J.T., Lawler, J., Ruff, P., Speicher, D., Cheung, M.C., Kan, Y.W., and Palek, J. (1990). cDNA sequence for human erythrocyte ankyrin. Proc Natl Acad Sci USA 87, 1730–1734.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Leite, R.C.A., Basseres, D.S., Ferreira, J.S., Alberto, F.L., Costa, F.F., and Saad, S.T.O. (2000). Low frequency of ankyrin mutations in hereditary spherocytosis: identification of three novel mutations. Hum Mutat 16, 529–529.CrossRefPubMedGoogle Scholar
  25. Liu, S., Jiang, H., Huang, L.Y., and Li, D.Z. (2017). A de novo ankyrin mutation (ANK1 Q109X) causing severe hereditary spherocytosis from preterm neonatal period. Ann Hematol 96, 1067–1068.CrossRefPubMedGoogle Scholar
  26. Lux, S.E., John, K.M., Kopito, R.R., and Lodish, H.F. (1989). Cloning and characterization of band 3, the human erythrocyte anion-exchange protein (AE1). Proc Natl Acad Sci USA 86, 9089–9093.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lux, S.E., and Palek, J. (1995). Disorders of the red cell membrane. In: Blood: Principles and Practice of Hematology, R.I. Handin, S.E. Lux, and T.P. Stossel, eds. (Philadelphia: Lippincott), pp. 1701–1818.Google Scholar
  28. McMullin, M.F. (1999). The molecular basis of disorders of the red cell membrane. J Clin Pathol 52, 245–248.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miraglia del Giudice, E., Nobili, B., Francese, M., D’urso, L., Iolascon, A., Eber, S., and Perrotta, S. (2001). Clinical and molecular evaluation of non-dominant hereditary spherocytosis. Br J Haematol 112, 42–47.CrossRefPubMedGoogle Scholar
  30. Park, J., Jeong, D.C., Yoo, J., Jang, W., Chae, H., Kim, J., Kwon, A., Choi, H., Lee, J.W., Chung, N.G., et al. (2016). Mutational characteristics of ANK1 and SPTB genes in hereditary spherocytosis. Clin Genet 90, 69–78.CrossRefPubMedGoogle Scholar
  31. Perrotta, S., Gallagher, P.G., and Mohandas, N. (2008). Hereditary spherocytosis. Lancet 372, 1411–1426.CrossRefPubMedGoogle Scholar
  32. Rybicki, A.C., Qiu, J.J., Musto, S., Rosen, N.L., Nagel, R.L., and Schwartz, RS. (1993). Human erythrocyte protein 4.2 deficiency associated with hemolytic anemia and a homozygous 40 glutamic acid→lysine substitution in the cytoplasmic domain of band 3 (band 3Montefiore). Blood 81, 2155–2165.PubMedGoogle Scholar
  33. Sánchez-López, J.Y., Camacho-Torres, A.L., Ibarra, B., Tintos, J.A., and Perea, F.J. (2010). Analysis of the SLC4A1 gene in three Mexican patients with hereditary spherocytosis: report of a novel mutation. Genet Mol Biol 33, 9–11.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sangerman, J., Maksimova, Y., Edelman, E.J., Morrow, J.S., Forget, B.G., and Gallagher, P.G. (2008). Ankyrin-linked hereditary spherocytosis in an African-American kindred. Am J Hematol 83, 789–794.CrossRefPubMedGoogle Scholar
  35. Soemedi, R., Cygan, K.J., Rhine, C.L., Wang, J., Bulacan, C., Yang, J., Bayrak-Toydemir, P., McDonald, J., and Fairbrother, W.G. (2017). Pathogenic variants that alter protein code often disrupt splicing. Nat Genet 49, 848–855.CrossRefPubMedGoogle Scholar
  36. Van Zwieten, R., François, J.J.J.M., Van Leeuwen, K., Van Wesel, A.C.W., Van Bruggen, R., Van Solinge, W.W., Roos, D., Verhoeven, A.J., and Van Wijk, R. (2013). Hereditary spherocytosis due to band 3 deficiency: 15 novel mutations in SLC4A1. Am J Hematol 88, 159–160.CrossRefPubMedGoogle Scholar
  37. Wang, C., Cui, Y., Li, Y., Liu, X., and Han, J. (2015). A systematic review of hereditary spherocytosis reported in Chinese biomedical journals from 1978 to 2013 and estimation of the prevalence of the disease using a disease model. Intract Rare Dis Res 4, 76–81.CrossRefGoogle Scholar
  38. Wichterle, H., Hanspal, M., Palek, J., and Jarolim, P. (1996). Combination of two mutant alpha spectrin alleles underlies a severe spherocytic hemolytic anemia. J Clin Invest 98, 2300–2307.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Winkelmann, J.C., Chang, J.G., Tse, W.T., Scarpa, A.L., Marchesi, V.T., and Forget, B.G. (1990). Full-length sequence of the cDNA for human erythroid beta-spectrin. J Biol Chem 265, 11827–11832.PubMedGoogle Scholar
  40. Wrong, O., Bruce, L.J., Unwin, R.J., Toye, A.M., and Tanner, M.J.A. (2002). Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int 62, 10–19.CrossRefPubMedGoogle Scholar
  41. Yawata, Y., Kanzaki, A., Yawata, A., Doerfler, W., Ozcan, R., and Eber, S. W. (2000). Characteristic features of the genotype and phenotype of hereditary spherocytosis in the Japanese population. Int J Hematol 71, 118–135.PubMedGoogle Scholar
  42. Yawata, Y., Kanzaki, A., Yawata, A., Nakanishi, H., and Kaku, M. (2001). Hereditary red cell membrane disorders in Japan: their genotypic and phenotypic features in 1014 cases studied. Hematology 6, 399–422.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical SciencesSchool of Basic Medicine Peking Union Medical CollegeBeijingChina
  2. 2.Joy Orient Translational Medicine Research Center Co., LtdBeijingChina
  3. 3.The Research Center for Medical GenomicsChina Medical UniversityShenyangChina
  4. 4.Medical Genetics Institute, Henan Provincial People’s HospitalPeople’s Hospital of Zhengzhou University, People’s Hospital of Henan UniversityZhengzhouChina

Personalised recommendations