Advertisement

Science China Life Sciences

, Volume 61, Issue 8, pp 912–923 | Cite as

Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma

  • Jihui Zhu
  • Han Yu
  • Shuzhen Chen
  • Pinghua Yang
  • Zihui Dong
  • Yan Ling
  • Hao Tang
  • Shilei Bai
  • Wen Yang
  • Liang Tang
  • Feng Shen
  • Hongyang Wang
  • Wen Wen
Research Paper
  • 25 Downloads

Abstract

The inflammatory environment and existence of cancer stem cells are critical for progression and intrahepatic recurrence of hepatocellular carcinoma (HCC) after curative resections. Here, we investigated the prognostic significance of combining high mobility group box 1 (HMGB1) expression and hepatic progenitor marker OV6 in hepatocellular carcinoma. Expression of HMGB1 and OV6 was evaluated using immunohistochemistry profiling in tissue microarrays containing samples from 208 HCC patients. Invasive clinical or pathological factors were found in patients with high expression of HMGB1 or OV6. Higher HMGB1 was associated with poorer clinical outcomes, and independently related to elevated 5-year recurrence incidence (85.5% vs. 62.4%, P<0.001). We also found that more OV6 positive staining was correlated with poor prognosis of HCC patients (P<0.001). Notably, expression of HMGB1 was positively correlated with OV6 in density (R2=0.032, P<0.001) and reversely related to HCC outcomes. Abnormal expression of HMGB1 in combination with positive staining of OV6 displayed poorer prognostic performance than single biomarker alone (area under curve (AUC) survival=0.696). Therefore, HMGB1 and OV6 positive staining are promising prognostic parameters for HCC, and we propose that HMGB1 and OV6 may cooperate with each other and predict poor prognosis of HCC.

Keywords

hepatocellular carcinoma high mobility group box 1 hepatic progenitor marker OV6 prognosis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81370061, 81521091, 81572896, 81370137, 81722034) and the National Science and Technology Key Projects (2017ZX10203205, 2017ZX10302202).

References

  1. Allegra, C.J., Jessup, J.M., Somerfield, M.R., Hamilton, S.R., Hammond, E.H., Hayes, D.F., McAllister, P.K., Morton, R.F., and Schilsky, R.L. (2009). American Society of Clinical Oncology Provisional Clinical Opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27, 2091–2096.CrossRefPubMedGoogle Scholar
  2. Aravalli, R.N., Steer, C.J., and Cressman, E.N.K. (2008). Molecular mechanisms of hepatocellular carcinoma. Hepatology 48, 2047–2063.CrossRefPubMedGoogle Scholar
  3. Bassi, R., Giussani, P., Anelli, V., Colleoni, T., Pedrazzi, M., Patrone, M., Viani, P., Sparatore, B., Melloni, E., and Riboni, L. (2008). HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol 87, 23–33.CrossRefPubMedGoogle Scholar
  4. Brezniceanu, M.L., Volp, K., Bosser, S., Solbach, C., Lichter, P., Joos, S., and Zornig, M. (2003). HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 17, 1295–1297.CrossRefPubMedGoogle Scholar
  5. Chen, S., Dong, Z., Yang, P., Wang, X., Jin, G., Yu, H., Chen, L., Li, L., Tang, L., Bai, S., Yan, H., Shen, F., Cong, W., Wen, W., and Wang, H. (2017). Hepatitis B virus X protein stimulates high mobility group box 1 secretion and enhances hepatocellular carcinoma metastasis. Cancer Lett 394, 22–32.CrossRefPubMedGoogle Scholar
  6. Dukic-Stefanovic, S., Gasic-Milenkovic, J., Deuther-Conrad, W., and Münch, G. (2003). Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs). J Neurochem 87, 44–55.CrossRefPubMedGoogle Scholar
  7. Ellerman, J.E., Brown, C.K., de Vera, M., Zeh, H.J., Billiar, T., Rubartelli, A., and Lotze, M.T. (2007). Masquerader: high mobility group Box-1 and cancer. Clin Cancer Res 13, 2836–2848.CrossRefPubMedGoogle Scholar
  8. Gerlinger, M., Rowan, A.J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A. C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., and Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366, 883–892.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hofmann, M.A., Drury, S., Fu, C., Qu, W., Taguchi, A., Lu, Y., Avila, C., Kambham, N., Bierhaus, A., Nawroth, P., Neurath, M.F., Slattery, T., Beach, D., McClary, J., Nagashima, M., Morser, J., Stern, D., and Schmidt, A.M. (1999). RAGE mediates a novel proinflammatory axis. Cell 97, 889–901.CrossRefPubMedGoogle Scholar
  10. Hudson, B.I., Kalea, A.Z., Del Mar Arriero, M., Harja, E., Boulanger, E., D’Agati, V., and Schmidt, A.M. (2008). Interaction of the RAGE cytoplasmic domain with diaphanous-1 is required for ligand-stimulated cellular migration through activation of Rac1 and Cdc42. J Biol Chem 283, 34457–34468.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Huttunen, H.J., Kuja-Panula, J., Sorci, G., Agneletti, A.L., Donato, R., and Rauvala, H. (2000). Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. J Biol Chem 275, 40096–40105.CrossRefPubMedGoogle Scholar
  12. Jain, K.K. (2007). Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther 9, 563–571.PubMedGoogle Scholar
  13. Jordan, C.T., Guzman, M.L., and Noble, M. (2006). Cancer stem cells. N Engl J Med 355, 1253–1261.CrossRefPubMedGoogle Scholar
  14. Kim, J.Y., Park, H.K., Yoon, J.S., Kim, S.J., Kim, E.S., Ahn, K.S., Kim, D. S., Yoon, S.S., Kim, B.K., and Lee, Y.Y. (2008). Advanced glycation end product (AGE)-induced proliferation of HEL cells via receptor for AGE-related signal pathways. Int J Oncol 33, 493–501.PubMedGoogle Scholar
  15. Li, X.F., Chen, C., Xiang, D.M., Qu, L., Sun, W., Lu, X.Y., Zhou, T.F., Chen, S.Z., Ning, B.F., Cheng, Z., Xia, M.Y., Shen, W.F., Yang, W., Wen, W., Lee, T.K.W., Cong, W.M., Wang, H.Y., and Ding, J. (2017). Chronic inflammation-elicited liver progenitor cell conversion to liver cancer stem cell with clinical significance. Hepatology in press doi: 10.1002/hep.29372.Google Scholar
  16. Ling, S., Hu, Z., Yang, Z., Yang, F., Li, Y., Lin, P., Chen, K., Dong, L., Cao, L., Tao, Y., Hao, L., Chen, Q., Gong, Q., Wu, D., Li, W., Zhao, W., Tian, X., Hao, C., Hungate, E.A., Catenacci, D.V.T., Hudson, R.R., Li, W.H., Lu, X., and Wu, C.I. (2015). Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci USA 112, e6496–E6505.CrossRefPubMedGoogle Scholar
  17. Llovet, J.M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M., and Gores, G. (2016). Hepatocellular carcinoma. Nat Rev Dis Primers 2, 16018.CrossRefPubMedGoogle Scholar
  18. Magna, M., and Pisetsky, D.S. (2014). The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med 20, 1–146.CrossRefGoogle Scholar
  19. Medema, J.P. (2013). Cancer stem cells: the challenges ahead. Nat Cell Biol 15, 338–344.CrossRefPubMedGoogle Scholar
  20. Murray, C.J.L., Vos, T., Lozano, R., Naghavi, M., Flaxman, A.D., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J.A., Abdalla, S., Aboyans, V., Abraham, J., Ackerman, I., Aggarwal, R., Ahn, S.Y., Ali, M.K., AlMazroa, M.A., Alvarado, M., Anderson, H.R., Anderson, L.M., Andrews, K.G., Atkinson, C., Baddour, L.M., Bahalim, A.N., Barker-Collo, S., Barrero, L.H., Bartels, D.H., Basáñez, M.G., Baxter, A., Bell, M.L., Benjamin, E.J., Bennett, D., Bernabé, E., Bhalla, K., Bhandari, B., Bikbov, B., Abdulhak, A.B., Birbeck, G., Black, J.A., Blencowe, H., Blore, J.D., Blyth, F., Bolliger, I., Bonaventure, A., Boufous, S., Bourne, R., Boussinesq, M., Braithwaite, T., Brayne, C., Bridgett, L., Brooker, S., Brooks, P., Brugha, T.S., Bryan-Hancock, C., Bucello, C., Buchbinder, R., Buckle, G., Budke, C.M., Burch, M., Burney, P., Burstein, R., Calabria, B., Campbell, B., Canter, C.E., Carabin, H., Carapetis, J., Carmona, L., Cella, C., Charlson, F., Chen, H., Cheng, A.T. A., Chou, D., Chugh, S.S., Coffeng, L.E., Colan, S.D., Colquhoun, S., Colson, K.E., Condon, J., Connor, M.D., Cooper, L.T., Corriere, M., Cortinovis, M., de Vaccaro, K.C., Couser, W., Cowie, B.C., Criqui, M. H., Cross, M., Dabhadkar, K.C., Dahiya, M., Dahodwala, N., Damsere-Derry, J., Danaei, G., Davis, A., Leo, D.D., Degenhardt, L., Dellavalle, R., Delossantos, A., Denenberg, J., Derrett, S., Des Jarlais, D.C., Dharmaratne, S.D., Dherani, M., Diaz-Torne, C., Dolk, H., Dorsey, E.R., Driscoll, T., Duber, H., Ebel, B., Edmond, K., Elbaz, A., Ali, S.E., Erskine, H., Erwin, P.J., Espindola, P., Ewoigbokhan, S.E., Farzadfar, F., Feigin, V., Felson, D.T., Ferrari, A., Ferri, C.P., Fèvre, E.M., Finucane, M.M., Flaxman, S., Flood, L., Foreman, K., Forouzanfar, M.H., Fowkes, F.G.R., Fransen, M., Freeman, M.K., Gabbe, B.J., Gabriel, S. E., Gakidou, E., Ganatra, H.A., Garcia, B., Gaspari, F., Gillum, R.F., Gmel, G., Gonzalez-Medina, D., Gosselin, R., Grainger, R., Grant, B., Groeger, J., Guillemin, F., Gunnell, D., Gupta, R., Haagsma, J., Hagan, H., Halasa, Y.A., Hall, W., Haring, D., Haro, J.M., Harrison, J.E., Havmoeller, R., Hay, R.J., Higashi, H., Hill, C., Hoen, B., Hoffman, H., Hotez, P.J., Hoy, D., Huang, J.J., Ibeanusi, S.E., Jacobsen, K.H., James, S.L., Jarvis, D., Jasrasaria, R., Jayaraman, S., Johns, N., Jonas, J.B., Karthikeyan, G., Kassebaum, N., Kawakami, N., Keren, A., Khoo, J.P., King, C.H., Knowlton, L.M., Kobusingye, O., Koranteng, A., Krishnamurthi, R., Laden, F., Lalloo, R., Laslett, L.L., Lathlean, T., Leasher, J. L., Lee, Y.Y., Leigh, J., Levinson, D., Lim, S.S., Limb, E., Lin, J.K., Lipnick, M., Lipshultz, S.E., Liu, W., Loane, M., Ohno, S.L., Lyons, R., Mabweijano, J., MacIntyre, M.F., Malekzadeh, R., Mallinger, L., Manivannan, S., Marcenes, W., March, L., Margolis, D.J., Marks, G.B., Marks, R., Matsumori, A., Matzopoulos, R., Mayosi, B.M., McAnulty, J.H., McDermott, M.M., McGill, N., McGrath, J., Medina-Mora, M.E., Meltzer, M., Memish, Z.A., Mensah, G.A., Merriman, T.R., Meyer, A. C., Miglioli, V., Miller, M., Miller, T.R., Mitchell, P.B., Mock, C., Mocumbi, A.O., Moffitt, T.E., Mokdad, A.A., Monasta, L., Montico, M., Moradi-Lakeh, M., Moran, A., Morawska, L., Mori, R., Murdoch, M.E., Mwaniki, M.K., Naidoo, K., Nair, M.N., Naldi, L., Narayan, K.M.V., Nelson, P.K., Nelson, R.G., Nevitt, M.C., Newton, C.R., Nolte, S., Norman, P., Norman, R., O’Donnell, M., O’Hanlon, S., Olives, C., Omer, S.B., Ortblad, K., Osborne, R., Ozgediz, D., Page, A., Pahari, B., Pandian, J.D., Rivero, A.P., Patten, S.B., Pearce, N., Padilla, R.P., Perez-Ruiz, F., Perico, N., Pesudovs, K., Phillips, D., Phillips, M.R., Pierce, K., Pion, S., Polanczyk, G.V., Polinder, S., Pope Iii, C.A., Popova, S., Porrini, E., Pourmalek, F., Prince, M., Pullan, R.L., Ramaiah, K.D., Ranganathan, D., Razavi, H., Regan, M., Rehm, J.T., Rein, D.B., Remuzzi, G., Richardson, K., Rivara, F.P., Roberts, T., Robinson, C., De Leòn, F.R., Ronfani, L., Room, R., Rosenfeld, L.C., Rushton, L., Sacco, R.L., Saha, S., Sampson, U., Sanchez-Riera, L., Sanman, E., Schwebel, D.C., Scott, J.G., Segui-Gomez, M., Shahraz, S., Shepard, D.S., Shin, H., Shivakoti, R., Silberberg, D., Singh, D., Singh, G.M., Singh, J.A., Singleton, J., Sleet, D.A., Sliwa, K., Smith, E., Smith, J.L., Stapelberg, N.J., Steer, A., Steiner, T., Stolk, W.A., Stovner, L.J., Sudfeld, C., Syed, S., Tamburlini, G., Tavakkoli, M., Taylor, H.R., Taylor, J.A., Taylor, W. J., Thomas, B., Thomson, W.M., Thurston, G.D., Tleyjeh, I.M., Tonelli, M., Towbin, J.A., Truelsen, T., Tsilimbaris, M.K., Ubeda, C., Undurraga, E.A., van der Werf, M.J., van Os, J., Vavilala, M.S., Venketasubramanian, N., Wang, M., Wang, W., Watt, K., Weatherall, D.J., Weinstock, M.A., Weintraub, R., Weisskopf, M.G., Weissman, M.M., White, R.A., Whiteford, H., Wiebe, N., Wiersma, S.T., Wilkinson, J.D., Williams, H.C., Williams, S.R., Witt, E., Wolfe, F., Woolf, A.D., Wulf, S., Yeh, P.H., Zaidi, A.K., Zheng, Z.J., Zonies, D., and Lopez, A.D. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223.CrossRefPubMedGoogle Scholar
  21. Nathan, H., Schulick, R.D., Choti, M.A., and Pawlik, T.M. (2009). Predictors of survival after resection of early hepatocellular carcinoma. Ann Surgery 249, 799–805.CrossRefGoogle Scholar
  22. Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., Baehner, F.L., Walker, M.G., Watson, D., Park, T., Hiller, W., Fisher, E.R., Wickerham, D.L., Bryant, J., and Wolmark, N. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351, 2817–2826.CrossRefPubMedGoogle Scholar
  23. Palumbo, R., De Marchis, F., Pusterla, T., Conti, A., Alessio, M., and Bianchi, M.E. (2009). Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukocyte Biol 86, 617–623.CrossRefPubMedGoogle Scholar
  24. Reddy, M.A., Li, S.L., Sahar, S., Kim, Y.S., Xu, Z.G., Lanting, L., and Natarajan, R. (2006). Key role of Src kinase in S100B-induced activation of the receptor for advanced glycation end products in vascular smooth muscle cells. J Biol Chem 281, 13685–13693.CrossRefPubMedGoogle Scholar
  25. Roskams, T. (2006). Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene 25, 3818–3822.CrossRefPubMedGoogle Scholar
  26. Schiraldi, M., Raucci, A., Muñoz, L.M., Livoti, E., Celona, B., Venereau, E., Apuzzo, T., De Marchis, F., Pedotti, M., Bachi, A., Thelen, M., Varani, L., Mellado, M., Proudfoot, A., Bianchi, M.E., and Uguccioni, M. (2012). HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med 209, 551–563.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sherman, M. (2008). Recurrence of hepatocellular carcinoma. N Engl J Med 359, 2045–2047.CrossRefPubMedGoogle Scholar
  28. Shigdar, S., Li, Y., Bhattacharya, S., O’Connor, M., Pu, C., Lin, J., Wang, T., Xiang, D., Kong, L., Wei, M.Q., Zhu, Y., Zhou, S., and Duan, W. (2014). Inflammation and cancer stem cells. Cancer Lett 345, 271–278.CrossRefPubMedGoogle Scholar
  29. Sia, D., Villanueva, A., Friedman, S.L., and Llovet, J.M. (2017). Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology 152, 745–761.CrossRefPubMedGoogle Scholar
  30. Sims, G.P., Rowe, D.C., Rietdijk, S.T., Herbst, R., and Coyle, A.J. (2010). HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol 28, 367–388.CrossRefPubMedGoogle Scholar
  31. Sparvero, L.J., Asafu-Adjei, D., Kang, R., Tang, D., Amin, N., Im, J., Rutledge, R., Lin, B., Amoscato, A.A., Zeh, H.J., and Lotze, M.T. (2009). RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Torre, L.A., Bray, F., Siegel, R.L., Ferlay, J., Lortet-Tieulent, J., and Jemal, A. (2015). Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108.CrossRefPubMedGoogle Scholar
  33. Touré, F., Zahm, J.M., Garnotel, R., Lambert, E., Bonnet, N., Schmidt, A. M., Vitry, F., Chanard, J., Gillery, P., and Rieu, P. (2008). Receptor for advanced glycation end-products (RAGE) modulates neutrophil adhesion and migration on glycoxidated extracellular matrix. Biochem J 416, 255–261.CrossRefPubMedGoogle Scholar
  34. Tsung, A., Tohme, S., and Billiar, T.R. (2014). High-mobility group box-1 in sterile inflammation. J Intern Med 276, 425–443.CrossRefPubMedGoogle Scholar
  35. Villanueva, A., Toffanin, S., and Llovet, J.M. (2008). Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps. Curr Opin Oncol 20, 444–453.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Yamashita, T., and Wang, X.W. (2013). Cancer stem cells in the development of liver cancer. J Clin Invest 123, 1911–1918.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Yan, W., Chang, Y., Liang, X., Cardinal, J.S., Huang, H., Thorne, S.H., Monga, S.P.S., Geller, D.A., Lotze, M.T., and Tsung, A. (2012). Highmobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology 55, 1863–1875.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yang, W., Wang, C., Lin, Y., Liu, Q., Yu, L., Tang, L., Yan, H.X., Fu, J., Chen, Y., Zhang, H.L., Tang, L., Zheng, L.Y., He, Y.Q., Li, Y.Q., Wu, F. Q., Zou, S.S., Li, Z., Wu, M.C., Feng, G.S., and Wang, H.Y. (2012). OV6+ tumor-initiating cells contribute to tumor progression and invasion in human hepatocellular carcinoma. J Hepatol 57, 613–620.CrossRefPubMedGoogle Scholar
  39. Yang, W., Yan, H.X., Chen, L., Liu, Q., He, Y.Q., Yu, L.X., Zhang, S.H., Huang, D.D., Tang, L., Kong, X.N., Chen, C., Liu, S.Q., Wu, M.C., and Wang, H.Y. (2008). Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res 68, 4287–4295.CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jihui Zhu
    • 1
    • 2
  • Han Yu
    • 1
    • 2
  • Shuzhen Chen
    • 1
    • 2
  • Pinghua Yang
    • 3
  • Zihui Dong
    • 1
    • 2
  • Yan Ling
    • 1
    • 2
  • Hao Tang
    • 4
  • Shilei Bai
    • 3
  • Wen Yang
    • 1
    • 2
  • Liang Tang
    • 1
    • 2
  • Feng Shen
    • 3
  • Hongyang Wang
    • 1
    • 2
    • 5
  • Wen Wen
    • 1
    • 2
    • 5
  1. 1.National Center for Liver Cancer, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
  2. 2.International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
  3. 3.Department of Hepatic Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
  4. 4.Department of Respiratory Medicine, Changzheng HospitalSecond Military Medical UniversityShanghaiChina
  5. 5.Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghaiChina

Personalised recommendations