The effect of alkyl chain branching positions on the electron mobility and photovoltaic performance of naphthodithiophene diimide (NDTI)-based polymers

  • Jing Yang
  • Ning An
  • Su Sun
  • Xiangnan SunEmail author
  • Masahiro Nakano
  • Kazuo TakimiyaEmail author
  • Bo Xiao
  • Erjun ZhouEmail author


Conjugated polymers are widely used in organic optoelectronic devices due to their solution processability, thermal stability and structural diversity. Generally, alkyl side chains must be utilized to increase the solubility of final polymers in the processing solvent. However, the effects of different type alkyl chains on the properties of n-type photovoltaic polymers have rarely been investigated. In this article, we synthesized three naphthodithiophene diimide (NDTI) based polymers containing bulky alkyl chains with different branching position, named as NDTI-1, NDTI-2 and NDTI-3, respectively. We systematically investigated the effect of different branching point on the molecular packing, charge transport and photovoltaic performance. When moving the branching point away from the backbone, the intermolecular interaction became stronger, which could be proved by 2D grazing incidence wide angle X-ray scattering (GIWAXS) measurement. Therefore, the electron mobilities in organic field-effect transistors gradually increased from 2.11×10−3 cm2 V−1 s−1 for NDTI-1 to 4.70×10−2 cm2 V−1 s−1 for NDTI-2 and 9.27×10−2 cm2 V−1 s−1 for NDTI-3, which are quite high values for polymers with face-on orientation. In addition, the NDTI-2 and NDTI-3 thin films exhibited red-shifted absorption spectra compared with NDTI-1. When blending with three classic donor polymers PBDB-T, PTB7-Th and PE61, NDTI-2 based devices always showed the higher power conversion efficiencies (PCEs) than the other two polymers (beside the comparable result of PTB7-Th:NDTI-3 combination) as a result of the high photocurrent response and high fill factor. Our results indicate that bulky alkyl chain with branching point at 2-position should be a good and safe choice for the design of naphthodithiophene diimide-based and even naphthalene diimide-based n-type photovoltaic polymers.


all-polymer solar cells branching positions naphthodithiophene diimide (NDTI) PBDB-T PTB7-Th 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (2017YFA0206600), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (QYZDB-SSW-SLH033) and the National Natural Science Foundation of China (51673048, 21875052).

Supplementary material

11426_2019_9645_MOESM1_ESM.doc (6.3 mb)
The Effect of Alkyl Chain Branching Positions on the Electron Mobility and Photovoltaic performance of Naphthodithiophene Diimide (NDTI)-based Polymers


  1. 1.
    Facchetti A. Chem Mater, 2011, 23: 733–758CrossRefGoogle Scholar
  2. 2.
    Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457CrossRefGoogle Scholar
  3. 3.
    Geng Y, Tang A, Tajima K, Zeng Q, Zhou E. J Mater Chem A, 2019, 7: 64–96CrossRefGoogle Scholar
  4. 4.
    Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Adv Mater, 2018, 4: 1804699Google Scholar
  5. 5.
    Kan B, Feng H, Yao H, Chang M, Wan X, Li C, Hou J, Chen Y. Sci China Chem, 2018, 61: 1307–1313CrossRefGoogle Scholar
  6. 6.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  7. 7.
    Zhou E, Cong J, Hashimoto K, Tajima K. Energy Environ Sci, 2012, 5: 9756–9759CrossRefGoogle Scholar
  8. 8.
    Xu X, Li Z, Zhang W, Meng X, Zou X, Di Carlo Rasi D, Ma W, Yartsev A, Andersson MR, Janssen RAJ, Wang E. Adv Energy Mater, 2018, 8: 1700908CrossRefGoogle Scholar
  9. 9.
    Huo L, Xue X, Liu T, Xiong W, Qi F, Fan B, Xie D, Liu F, Yang C, Sun Y. Chem Mater, 2018, 30: 3294–3300CrossRefGoogle Scholar
  10. 10.
    Liu T, Pan X, Meng X, Liu Y, Wei D, Ma W, Huo L, Sun X, Lee TH, Huang M, Choi H, Kim JY, Choy WCH, Sun Y. Adv Mater, 2017, 29: 1604251CrossRefGoogle Scholar
  11. 11.
    Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453CrossRefGoogle Scholar
  12. 12.
    Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668CrossRefGoogle Scholar
  13. 13.
    Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353CrossRefGoogle Scholar
  14. 14.
    Lee KC, Song S, Lee J, Kim DS, Kim JY, Yang C. ChemPhysChem, 2015, 16: 1305–1314CrossRefGoogle Scholar
  15. 15.
    Lei T, Dou JH, Pei J. Adv Mater, 2012, 24: 6457–6461CrossRefGoogle Scholar
  16. 16.
    Meager I, Ashraf RS, Mollinger S, Schroeder BC, Bronstein H, Beatrup D, Vezie MS, Kirchartz T, Salleo A, Nelson J, McCulloch I. J Am Chem Soc, 2013, 135: 11537–11540CrossRefGoogle Scholar
  17. 17.
    Dou JH, Zheng YQ, Lei T, Zhang SD, Wang Z, Zhang WB, Wang JY, Pei J. Adv Funct Mater, 2014, 24: 6270–6278CrossRefGoogle Scholar
  18. 18.
    Liu F, Li H, Gu C, Fu H. RSC Adv, 2015, 5: 10072–10080CrossRefGoogle Scholar
  19. 19.
    Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K. Angew Chem Int Ed, 2011, 50: 2799–2803CrossRefGoogle Scholar
  20. 20.
    Zhan X, Tan Z, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder SR. J Am Chem Soc, 2007, 129: 7246–7247CrossRefGoogle Scholar
  21. 21.
    Guo Y, Li Y, Awartani O, Zhao J, Han H, Ade H, Zhao D, Yan H. Adv Mater, 2016, 28: 8483–8489CrossRefGoogle Scholar
  22. 22.
    Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679–686CrossRefGoogle Scholar
  23. 23.
    Zhou E, Cong J, Zhao M, Zhang L, Hashimoto K, Tajima K. Chem Commun, 2012, 48: 5283–5285CrossRefGoogle Scholar
  24. 24.
    Zhou E, Cong J, Hashimoto K, Tajima K. Adv Mater, 2013, 25: 6991–6996CrossRefGoogle Scholar
  25. 25.
    Zhou E, Nakano M, Izawa S, Cong J, Osaka I, Takimiya K, Tajima K. ACS Macro Lett, 2014, 3: 872–875CrossRefGoogle Scholar
  26. 26.
    Nakano K, Nakano M, Xiao B, Zhou E, Suzuki K, Osaka I, Takimiya K, Tajima K. Macromolecules, 2016, 49: 1752–1760CrossRefGoogle Scholar
  27. 27.
    Yang J, Xiao B, Tajima K, Nakano M, Takimiya K, Tang A, Zhou E. Macromolecules, 2017, 50: 3179–3185CrossRefGoogle Scholar
  28. 28.
    You H, Kim D, Cho HH, Lee C, Chong S, Ahn NY, Seo M, Kim J, Kim FS, Kim BJ. Adv Funct Mater, 2018, 28: 1803613CrossRefGoogle Scholar
  29. 29.
    Fukutomi Y, Nakano M, Hu JY, Osaka I, Takimiya K. J Am Chem Soc, 2013, 135: 11445–11448CrossRefGoogle Scholar
  30. 30.
    Liao SH, Jhuo HJ, Cheng YS, Chen SA. Adv Mater, 2013, 25: 4766–4771CrossRefGoogle Scholar
  31. 31.
    Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734–4739CrossRefGoogle Scholar
  32. 32.
    Liu D, Zhao W, Zhang S, Ye L, Zheng Z, Cui Y, Chen Y, Hou J. Macromolecules, 2015, 48: 5172–5178CrossRefGoogle Scholar
  33. 33.
    Chen S, Jung S, Cho HJ, Kim NH, Jung S, Xu J, Oh J, Cho Y, Kim H, Lee B, An Y, Zhang C, Xiao M, Ki H, Zhang ZG, Kim JY, Li Y, Park H, Yang C. Angew Chem Int Ed, 2018, 57: 13277–13282CrossRefGoogle Scholar
  34. 34.
    An Y, Oh J, Chen S, Lee B, Lee SM, Han D, Yang C. Polym Chem, 2018, 9: 593–602CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.RIKEN Center for Emergent Matter Science (CEMS)SaitamaJapan
  4. 4.Henan Institutes of Advanced TechnologyZhengzhou UniversityZhengzhouChina

Personalised recommendations