Advertisement

Predictable site-selective radical fluorination of tertiary ethers

  • Junyang Ma
  • Wentao Xu
  • Jin XieEmail author
Communications
  • 50 Downloads

Abstract

In this communication, we disclose the first example of metal-free and site-selective radical fluorination of readily available tertiary alkyl ethers, enabled by synergistic photocatalysis and organocatalysis. This catalytic combination allows for exclusive fluorination of tertiary C-O bonds under mild conditions even in the presence of competing reaction sites. The excellent functional group tolerance affords valuable access to sterically hindered alkyl fluorides through late-stage modification of complex molecules. The successful use of tertiary alkyl ethers in radical fluorination enhances the structural diversity of aliphatic fluorides that can be derived from naturally abundant alcohols.

Keywords

cooperative catalysis C-O bond activation radical fluorination polarity-matching effect umpolung 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21971108, 21702098), the Natural Science Foundation of Jiangsu Province (BK20190006), Fundamental Research Funds for the Central Universities (020514380176), “Jiangsu Six Peak Talent Project”, “1000-Youth Talents Plan”, and start-up funds from Nanjing University. Mr. Xu was supported by the Scientific Research Foundation of Graduate School of Nanjing University (2018CL05).

Supplementary material

11426_2019_9636_MOESM1_ESM.pdf (12.5 mb)
Appendix

References

  1. 1.
    Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Tetrahedron, 2018, 74: 6367–6418CrossRefGoogle Scholar
  2. 2(a).
    Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881–1886CrossRefGoogle Scholar
  3. 2(b).
    Purser S, Moore PR, Swallow S, Gouverneur V. Chem Soc Rev, 2008, 37: 320–330PubMedCrossRefGoogle Scholar
  4. 3(a).
    Campbell MG, Ritter T. Chem Rev, 2015, 115: 612–633PubMedCrossRefGoogle Scholar
  5. 3(b).
    Yan H, Zhu C. Sci China Chem, 2017, 60: 214–222CrossRefGoogle Scholar
  6. 3(c).
    Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. Angew Chem Int Ed, 2019, 58: 14824–14848CrossRefGoogle Scholar
  7. 4(a).
    Champagne PA, Desroches J, Hamel JD, Vandamme M, Paquin JF. Chem Rev, 2015, 115: 9073–9174PubMedCrossRefGoogle Scholar
  8. 4(b).
    Liang T, Neumann CN, Ritter T. Angew Chem Int Ed, 2013, 52: 8214–8264CrossRefGoogle Scholar
  9. 5(a).
    Patrick TB, Johri KK, White DH. J Org Chem, 1983, 48: 4158–4159CrossRefGoogle Scholar
  10. 5(b).
    Yin F, Wang Z, Li Z, Li C. J Am Chem Soc, 2012, 134: 10401–10404PubMedCrossRefGoogle Scholar
  11. 5(c).
    Ventre S, Petronijevic FR, MacMillan DWC. J Am Chem Soc, 2015, 137: 5654–5657PubMedPubMedCentralCrossRefGoogle Scholar
  12. 5(d).
    Wang Z, Guo CY, Yang C, Chen JP. J Am Chem Soc, 2019, 141: 5617–5622PubMedCrossRefGoogle Scholar
  13. 6.
    Li Z, Wang Z, Zhu L, Tan X, Li C. J Am Chem Soc, 2014, 136: 16439–16443PubMedCrossRefPubMedCentralGoogle Scholar
  14. 7(a).
    Nishikata T, Ishida S, Fujimoto R. Angew Chem Int Ed, 2016, 55: 10008–10012CrossRefGoogle Scholar
  15. 7(b).
    Chen H, Liu Z, Lv Y, Tan X, Shen H, Yu HZ, Li C. Angew Chem Int Ed, 2017, 56: 15411–15415CrossRefGoogle Scholar
  16. 8(a).
    Bloom S, Knippel JL, Lectka T. Chem Sci, 2014, 5: 1175–1178CrossRefGoogle Scholar
  17. 8(b).
    Halperin SD, Fan H, Chang S, Martin RE, Britton R. Angew Chem Int Ed, 2014, 53: 4690–4693CrossRefGoogle Scholar
  18. 8(c).
    Liu W, Huang X, Cheng MJ, Nielsen RJ, Goddard WA, Groves JT. Science, 2012, 337: 1322–1325PubMedCrossRefPubMedCentralGoogle Scholar
  19. 8(d).
    West JG, Bedell TA, Sorensen EJ. Angew Chem Int Ed, 2016, 55: 8923–8927CrossRefGoogle Scholar
  20. 8(e).
    Xia JB, Zhu C, Chen C. J Am Chem Soc, 2013, 135: 17494–17500PubMedCrossRefGoogle Scholar
  21. 8(f).
    Bloom S, McCann M, Lectka T. Org Lett, 2014, 16: 6338–6341PubMedCrossRefGoogle Scholar
  22. 9(a).
    Brioche J. Tetrahedron Lett, 2018, 59: 4387–4391CrossRefGoogle Scholar
  23. 9(b).
    González-Esguevillas M, Miró J, Jeffrey JL, MacMillan DWC. Tetrahedron, 2019, 75: 4222–4227CrossRefGoogle Scholar
  24. 9(c).
    Su JY, Grünenfelder DC, Takeuchi K, Reisman SE. Org Lett, 2018, 20: 4912–4916PubMedCrossRefGoogle Scholar
  25. 10.
    Xu W, Ma J, Yuan XA, Dai J, Xie J, Zhu C. Angew Chem Int Ed, 2018, 57: 10357–10361CrossRefGoogle Scholar
  26. 11(a).
    Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926PubMedPubMedCentralCrossRefGoogle Scholar
  27. 11(b).
    Marzo L, Pagire SK, Reiser O, König B. Angew Chem Int Ed, 2018, 57: 10034–10072CrossRefGoogle Scholar
  28. 11(c).
    Xie J, Jin H, Hashmi ASK. Chem Soc Rev, 2017, 46: 5193–5203PubMedCrossRefGoogle Scholar
  29. 11(d).
    Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57CrossRefGoogle Scholar
  30. 12.
    Capaldo L, Ravelli D. Eur J Org Chem, 2017, 2017(15): 2056–2071CrossRefGoogle Scholar
  31. 13(a).
    Zhou N, Yuan XA, Zhao Y, Xie J, Zhu C. Angew Chem Int Ed, 2018, 57: 3990–3994CrossRefGoogle Scholar
  32. 13(b).
    Zhang M, Yuan XA, Zhu C, Xie J. Angew Chem Int Ed, 2019, 58: 312–316CrossRefGoogle Scholar
  33. 14.
    Borodkin GI, Shubin VG. Russ Chem Rev, 2019, 88: 160–203CrossRefGoogle Scholar
  34. 15.
    Talukdar R. Synlett, 2019, 30: 1713–1718CrossRefGoogle Scholar
  35. 16(a).
    Middleton WJ. J Org Chem, 1975, 40: 574–578CrossRefGoogle Scholar
  36. 16(b).
    Umemoto T, Singh RP, Xu Y, Saito N. J Am Chem Soc, 2010, 132: 18199–18205PubMedCrossRefPubMedCentralGoogle Scholar
  37. 17(a).
    Hayashi H, Sonoda H, Fukumura K, Nagata T. Chem Commun, 2002, 1618–1619Google Scholar
  38. 17(b).
    Sladojevich F, Arlow SI, Tang P, Ritter T. J Am Chem Soc, 2013, 135: 2470–2473PubMedPubMedCentralCrossRefGoogle Scholar
  39. 17(c).
    Li L, Ni C, Wang F, Hu J. Nat Commun, 2016, 7: 13320PubMedPubMedCentralCrossRefGoogle Scholar
  40. 18.
    Nielsen MK, Ugaz CR, Li W, Doyle AG. J Am Chem Soc, 2015, 137: 9571–9574PubMedCrossRefGoogle Scholar
  41. 19.
    Guo J, Kuang C, Rong J, Li L, Ni C, Hu J. Chem Eur J, 2019, 25: 7259–7264PubMedCrossRefGoogle Scholar
  42. 20(a).
    Jeffrey JL, Terrett JA, MacMillan DWC. Science, 2015, 349: 1532–1536PubMedPubMedCentralCrossRefGoogle Scholar
  43. 20(b).
    Zhang X, MacMillan DWC. J Am Chem Soc, 2017, 139: 11353–11356PubMedPubMedCentralCrossRefGoogle Scholar
  44. 20(c).
    Tanaka H, Sakai K, Kawamura A, Oisaki K, Kanai M. Chem Commun, 2018, 54: 3215–3218CrossRefGoogle Scholar
  45. 21(a).
    Hua AM, Bidwell SL, Baker SI, Hratchian HP, Baxter RD. ACS Catal, 2019, 9: 3322–3326CrossRefGoogle Scholar
  46. 21(b).
    Egami H, Masuda S, Kawato Y, Hamashima Y. Org Lett, 2018, 20: 1367–1370PubMedCrossRefGoogle Scholar
  47. 21(c).
    Danahy KE, Cooper JC, Van Humbeck JF. Angew Chem Int Ed, 2018, 57: 5134–5138CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations