Advertisement

Science China Chemistry

, Volume 62, Issue 11, pp 1542–1546 | Cite as

Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones

  • Maud Cassé
  • Christian Nisole
  • Héloïse Dossmann
  • Yves Gimbert
  • Jean-Marie Fourquez
  • Laure Haberkorn
  • Cyril OllivierEmail author
  • Louis FensterbankEmail author
Articles
  • 75 Downloads

Abstract

Under photocatalytic reductive conditions, trifluoromethyl radical addition onto an ynamide followed by cyclization on a benzoyl moiety produces diverse isoindolinone platforms with good yields. The selectivity of the radical cyclization, N-benzoyl vs. N-benzyl as radical acceptor and the E/Z ratio of isomers have been rationalized by modeling.

Keywords

ynamides trifluoromethylation photocatalysis cascade reactions tandem processes isoindolinones modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Sorbonne Université, CNRS and Servier for funding. The authors wish to acknowledge the analytical department of IDRS — Servier for the compounds analyses (IR, NMR, HR-MS) and the SRIMC department for the syntheses on big scale. This work was granted access to the high performance computing (HPC) resources of the HPCaVe Centre at Sorbonne Université and to the HPC resources of IDRIS under the allocation 2018-A0050810312 made by GENCI. The authors wish to acknowledge support from the ICMG Chemistry Nanobio Platform-PCECIC, Grenoble, for calculations facilities. Jérémy Forté is acknowledged for the X-ray diffraction analyses as well as Conor Dent Cullen and Scott Warchal for proofreading the manuscript.

Conflict of interest The authors declare that they have no conflict of interest.

Supplementary material

11426_2019_9627_MOESM1_ESM.pdf (2.9 mb)
Trifluoromethyl Radical Triggered Radical Cyclization of N-Benzoyl Ynamides leading to Isoindolinones

References

  1. 1.
    Albert M, Fensterbank L, Lacôte E, Malacria M. Tandem radical reactions. In: Gansäuer A, Ed. Topics Current Chemistry. Vol 264. Berlin: Springer, 2006. 1–62Google Scholar
  2. 2.
    Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard JP, Lacôte E, Larraufie MH, Maestri G, Malacria M, Ollivier C. Radical cascade reactions. In: Chatgilialoglu C, Studer A, Eds. Encyclopedia of Radicals in Chemistry, Biology and Materials. Chichester: John Wiley & Sons, 2012. 729–766Google Scholar
  3. 3.
    Godineau E, Landais Y. Chem Eur J, 2009, 15: 3044–3055PubMedGoogle Scholar
  4. 4.
    Liautard V, Landais Y. Free-radical multicomponent processes. In: Zhu J, Wang Q, Wang MX, Eds. Multicomponent Reactions. 2nd Ed. Weinheim: Wiley, 2014. 401–438Google Scholar
  5. 5.
    Chen JR, Yu XY, Xiao WJ. Synthesis, 2015, 47: 604–629Google Scholar
  6. 6.
    Zhang Y, Sun K, Lv Q, Chen X, Qu L, Yu B. Chin Chem Lett, 2019, 30: 1361–1368Google Scholar
  7. 7.
    Xuan J, Studer A. Chem Soc Rev, 2017, 46: 4329–4346Google Scholar
  8. 8.
    Huang HM, Garduño-Castro MH, Morrill C, Procter DJ. Chem Soc Rev, 2019, 48: 4626–4638PubMedGoogle Scholar
  9. 9.
    Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew Chem Int Ed, 2019, 58: 2289–2294Google Scholar
  10. 10.
    Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432–2506PubMedGoogle Scholar
  11. 11.
    Dagousset G, Carboni A, Masson G, Magnier E. Visible light-induced (per)fluoroalkylation by photoredox catalysis. In: Groult H, Leroux FR, Tressaud A, Eds. Modern Synthesis Process and Reactivity of Fluorinated Compounds: Progress in Fluorine Science. Amsterdam: Elsevier, 2017. 389–426Google Scholar
  12. 12.
    Oh E, Kim H, Han S. Synthesis, 2018, 50: 3346–3358Google Scholar
  13. 13.
    Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J Am Chem Soc, 2015, 137: 964–973PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zheng J, Deng Z, Zhang Y, Cui S. Adv Synth Catal, 2016, 358: 746–751Google Scholar
  15. 15.
    Li Y, Lu Y, Qiu G, Ding Q. Org Lett, 2014, 16: 4240–4243PubMedGoogle Scholar
  16. 16.
    Noto N, Miyazawa K, Koike T, Akita M. Org Lett, 2015, 17: 3710–3713PubMedGoogle Scholar
  17. 17.
    Banerjee B, Litvinov DN, Kang J, Bettale JD, Castle SL. Org Lett, 2010, 12: 2650–2652PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sato A, Yorimitsu H, Oshima K. Synlett, 2009: 28–31Google Scholar
  19. 19.
    Marion F, Courillon C, Malacria M. Org Lett, 2003, 5: 5095–5097PubMedGoogle Scholar
  20. 20.
    Marion F, Coulomb J, Servais A, Courillon C, Fensterbank L, Malacria M. Tetrahedron, 2006, 62: 3856–3871Google Scholar
  21. 21.
    Balieu S, Toutah K, Carro L, Chamoreau LM, Rousselière H, Courillon C. Tetrahedron Lett, 2011, 52: 2876–2880Google Scholar
  22. 22.
    Baguia H, Deldaele C, Romero E, Michelet B, Evano G. Synthesis, 2018, 50: 3022–3030Google Scholar
  23. 23.
    Wang CS, Dixneuf PH, Soulé JF. Chem Rev, 2018, 118: 7532–7585PubMedGoogle Scholar
  24. 24.
    Staveness D, Bosque I, Stephenson CRJ. Acc Chem Res, 2016, 49: 2295–2306PubMedPubMedCentralGoogle Scholar
  25. 25.
    Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898–6926PubMedPubMedCentralGoogle Scholar
  26. 26.
    Pawlowski R, Stanek F, Stodulski M. Molecules, 2019, 24: 1533–1566PubMedCentralGoogle Scholar
  27. 27.
    Festa AA, Voskressensky LG, Van der Eycken EV. Chem Soc Rev, 2019, 48: 4401–4423PubMedGoogle Scholar
  28. 28.
    Chen JR, Hu XQ, Lu LQ, Xiao WJ. Acc Chem Res, 2016, 49: 1911–1923PubMedGoogle Scholar
  29. 29.
    Tanoury G. Synthesis, 2016, 48: 2009–2025Google Scholar
  30. 30.
    Cook AM, Wolf C. Tetrahedron Lett, 2015, 56: 2377–2392PubMedPubMedCentralGoogle Scholar
  31. 31.
    Evano G, Coste A, Jouvin K. Angew Chem Int Ed, 2010, 49: 2840–2859Google Scholar
  32. 32.
    Zhang Y, Hsung RP, Tracey MR, Kurtz KCM, Vera EL. Org Lett, 2004, 6: 1151–1154PubMedGoogle Scholar
  33. 33.
    Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650–682PubMedGoogle Scholar
  34. 34.
    Eisenberger P, Gischig S, Togni A. Chem Eur J, 2006, 12: 2579–2586PubMedGoogle Scholar
  35. 35.
    For trifluoromethyl-containing compounds redox potentials: Jiang Y, Yu H, Fu Y, Liu L. Sci China Chem, 2015, 58: 673–683Google Scholar
  36. 36.
    For photocatalysts redox potentials: Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322–5363PubMedPubMedCentralGoogle Scholar
  37. 37.
    For first uses in photoredox catalysis, see: Luo J, Zhang J. ACS Catal, 2016, 6: 873–877Google Scholar
  38. 38.
    For first uses in photoredox catalysis, see: Lévêque C, Chenneberg L, Corcé V, Ollivier C, Fensterbank L. Chem Commun, 2016, 52: 9877–9880Google Scholar
  39. 39.
    For a review, see: Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem Commun, 2019, 55: 5408–5419Google Scholar
  40. 40.
    For a revision of the redox potentials, see: Le Vaillant F, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem Sci, 2018, 9: 5883–5889PubMedPubMedCentralGoogle Scholar
  41. 41.
    Jacquet J, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L. Chem Sci, 2016, 7: 2030–2036PubMedGoogle Scholar
  42. 42.
    Singh K, Staig SJ, Weaver JD. J Am Chem Soc, 2014, 136: 5275–5278PubMedGoogle Scholar
  43. 43.
    Lin QY, Xu XH, Qing FL. J Org Chem, 2014, 79: 10434–10446PubMedGoogle Scholar
  44. 44.
    Larraufie MH, Courillon C, Ollivier C, Lacote E, Malacria M, Fensterbank L. J Am Chem Soc, 2010, 132: 4381–4387PubMedGoogle Scholar
  45. 45.
    Bogen S, Gulea M, Fensterbank L, Malacria M. J Org Chem, 1999, 64: 4920–4925PubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Maud Cassé
    • 1
    • 2
  • Christian Nisole
    • 2
  • Héloïse Dossmann
    • 1
  • Yves Gimbert
    • 1
    • 3
  • Jean-Marie Fourquez
    • 2
  • Laure Haberkorn
    • 2
  • Cyril Ollivier
    • 1
    Email author
  • Louis Fensterbank
    • 1
    Email author
  1. 1.Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCMParisFrance
  2. 2.Institut de Recherches ServierCroissy-sur-SeineFrance
  3. 3.Département de Chimie Moléculaire, CNRSUniversité Grenoble AlpesGièresFrance

Personalised recommendations