Advertisement

Science China Chemistry

, Volume 62, Issue 11, pp 1439–1449 | Cite as

Photocatalytic single electron transfer reactions on TiO2 semiconductor

  • Hideto MiyabeEmail author
  • Shigeru KohtaniEmail author
Reviews
  • 66 Downloads

Abstract

The use of inorganic semiconductor particles such as titanium dioxide (TiO2) has received relatively less attention in organic chemistry, although semiconductor particles have been widely used as a single electron transfer photocatalyst in water-purification, air-cleaning, and self-cleaning. In recent years, the photocatalysis on semiconductor particles has become an active area of research even in organic chemistry, since the heterogeneous semiconductor photocatalysis leads to the unique redox organic reactions. In an early stage, the semiconductor photocatalysis was applied to the oxidation of organic molecules. Semiconductor particles have also the potential to induce the reductive chemical transformations in the absence of oxygen (O2), by using the suitable sacrificial hole scavenger. In this review, we summarize the representative examples of the reductive and oxidative organic reactions using semiconductor particles and the recent applications to the stereoselective reactions.

Keywords

photocatalyst semiconductor titanium dioxide oxidation reduction radical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) (16K08188, 19K05681).

Conflict of interest The authors declare that they have no conflict of interest.

References

  1. 1.
    Fujishima A, Honda K. Nature, 1972, 238: 37–38Google Scholar
  2. 2.
    Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253–278PubMedGoogle Scholar
  3. 3.
    Fujishima A, Zhang X, Tryk D. Int J Hydrogen Energy, 2007, 32: 2664–2672Google Scholar
  4. 4.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem Rev, 1995, 95: 69–96Google Scholar
  5. 5.
    Fox MA. Top Curr Chem, 1987, 142: 72–99Google Scholar
  6. 6.
    Kisch H. Adv Photochem, 2001, 26: 93–143Google Scholar
  7. 7.
    Palmisano G, Augugliaro V, Pagliaro M, Palmisano L. Chem Commun, 2007, 95: 3425Google Scholar
  8. 8.
    Shiraishi Y, Hirai T. J Photochem Photobiol C-Photochem Rev, 2008, 9: 157–170Google Scholar
  9. 9.
    Palmisano G, García-López E, Marcì G, Loddo V, Yurdakal S, Augugliaro V, Palmisano L. Chem Commun, 2010, 46: 7074–7089Google Scholar
  10. 10.
    Kohtani S, Yoshioka E, Miyabe H. Photocatalytic hydrogenation on semiconductor particles. In: Karamé I, Ed. HyDrogenation. Rijeka: Intech, 2012. 291–308Google Scholar
  11. 11.
    Lang X, Chen X, Zhao J. Chem Soc Rev, 2014, 43: 473–486PubMedGoogle Scholar
  12. 12.
    Lang X, Ma W, Chen C, Ji H, Zhao J. Acc Chem Res, 2014, 47: 355–363PubMedGoogle Scholar
  13. 13.
    Kisch H. Acc Chem Res, 2017, 50: 1002–1010PubMedGoogle Scholar
  14. 14.
    Ma D, Liu A, Li S, Lu C, Chen C. Catal Sci Technol, 2018, 8: 2030–2045Google Scholar
  15. 15.
    Wang Y, Liu A, Ma D, Li S, Lu C, Li T, Chen C. Catalysts, 2018, 8: 355Google Scholar
  16. 16.
    Cuendet P, Graetzel M. J Phys Chem, 1987, 91: 654–657Google Scholar
  17. 17.
    Joyce-Pruden C, Pross JK, Li Y. J Org Chem, 1992, 57: 5087–5091Google Scholar
  18. 18.
    Matsushita Y, Kumada S, Wakabayashi K, Sakeda K, Ichimura T. Chem Lett, 2006, 35: 410–411Google Scholar
  19. 19.
    Baker LR, Kennedy G, van Spronsen M, Hervier A, Cai X, Chen S, Wang LW, Somorjai GA. J Am Chem Soc, 2012, 134: 14208–14216PubMedGoogle Scholar
  20. 20.
    Park JW, Hong MJ, Park KK. Bull Korean Chem Soc, 2001, 22: 1213–1216Google Scholar
  21. 21.
    Park JW, Kim EK, Park KK. Bull Korean Chem Soc, 2002, 23: 1229–1234Google Scholar
  22. 22.
    Kohtani S, Yoshioka E, Saito K, Kudo A, Miyabe H. Catal Commun, 2010, 11: 1049–1053Google Scholar
  23. 23.
    Kohtani S, Yoshioka E, Saito K, Kudo A, Miyabe H. J Phys Chem C, 2012, 116: 17705–17713Google Scholar
  24. 24.
    Kohtani S, Nishioka S, Yoshioka E, Miyabe H. Catal Commun, 2014, 43: 61–65Google Scholar
  25. 25.
    Kohtani S, Kamoi Y, Yoshioka E, Miyabe H. Catal Sci Technol, 2014, 4: 1084–1091Google Scholar
  26. 26.
    Kohtani S, Kurokawa T, Yoshioka E, Miyabe H. Appl Catal A-Gen, 2016, 521: 68–74Google Scholar
  27. 27.
    Kominami H, Yamamoto S, Imamura K, Tanaka A, Hashimoto K. Chem Commun, 2014, 50: 4558–4560Google Scholar
  28. 28.
    Mahdavi F, Bruton TC, Li Y. J Org Chem, 1993, 58: 744–746Google Scholar
  29. 29.
    Brezová V, Blažková A, Ŝurina I, Havlínová B. J Photochem Photobiol A-Chem, 1997, 107: 233–237Google Scholar
  30. 30.
    Ferry JL, Glaze WH. J Phys Chem B, 1998, 102: 2239–2244Google Scholar
  31. 31.
    Ferry JL, Glaze WH. Langmuir, 1998, 14: 3551–3555Google Scholar
  32. 32.
    Flores SO, Rios-Bernij O, Valenzuela MA, Córdova I, Gómez R, Gutiérrez R. Top Catal, 2007, 44: 507–511Google Scholar
  33. 33.
    Kominami H, Iwasaki S, Maeda T, Imamura K, Hashimoto K, Kera Y, Ohtani B. Chem Lett, 2009, 38: 410–411Google Scholar
  34. 34.
    Wang H, Partch RE, Li Y. J Org Chem, 1997, 62: 5222–5225Google Scholar
  35. 35.
    Park KH, Joo HS, Ahn KI, Jun K. Tetrahedron Lett, 1995, 36: 5943–5946Google Scholar
  36. 36.
    He L, Wang JQ, Gong Y, Liu YM, Cao Y, He HY, Fan KN. Angew Chem Int Ed, 2011, 50: 10216–10220Google Scholar
  37. 37.
    Tang L, Guo X, Yang Y, Zha Z, Wang Z. Chem Commun, 2014, 50: 6145–6148Google Scholar
  38. 38.
    Tada H, Ishida T, Takao A, Ito S, Mukhopadhyay S, Akita T, Tanaka K, Kobayashi H. ChemPhysChem, 2005, 6: 1537–1543PubMedGoogle Scholar
  39. 39.
    Wang H, Yan J, Chang W, Zhang Z. Catal Commun, 2009, 10: 989–994Google Scholar
  40. 40.
    Füldner S, Mild R, Siegmund HI, Schroeder JA, Gruber M, König B. Green Chem, 2010, 12: 400–406Google Scholar
  41. 41.
    Shiraishi Y, Togawa Y, Tsukamoto D, Tanaka S, Hirai T. ACS Catal, 2012, 2: 2475–2481Google Scholar
  42. 42.
    Tanaka A, Nishino Y, Sakaguchi S, Yoshikawa T, Imamura K, Hashimoto K, Kominami H. Chem Commun, 2013, 49: 2551–2553Google Scholar
  43. 43.
    Tsutsumi K, Uchikawa F, Sakai K, Tabata K. ACS Catal, 2016, 6: 4394–4398Google Scholar
  44. 44.
    Ohtani B, Goto Y, Nishimoto SI, Inui T. Faraday Trans, 1996, 92: 4291–4295Google Scholar
  45. 45.
    Liang S, Monsen P, Hammond GB, Xu B. Org Chem Front, 2016, 3: 505–509Google Scholar
  46. 46.
    Nishimoto S, Ohtani B, Yoshikawa T, Kagiya T. J Am Chem Soc, 1983, 105: 7180–7182Google Scholar
  47. 47.
    Shiraishi Y, Tsukamoto D, Sugano Y, Shiro A, Ichikawa S, Tanaka S, Hirai T. ACS Catal, 2012, 2: 1984–1992Google Scholar
  48. 48.
    Pal B, Ikeda S, Kominami H, Kera Y, Ohtani B. J Catal, 2003, 217: 152–159Google Scholar
  49. 49.
    Ohtani B, Pal B, Ikeda S. Catal Surveys from Asia, 2003, 7: 165–176Google Scholar
  50. 50.
    Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T. ACS Catal, 2013, 3: 312–320Google Scholar
  51. 51.
    Tsarev VN, Morioka Y, Caner J, Wang Q, Ushimaru R, Kudo A, Naka H, Saito S. Org Lett, 2015, 17: 2530–2533PubMedGoogle Scholar
  52. 52.
    Tang L, Yang Y, Wen L, Zhang S, Zha Z, Wang Z. Org Chem Front, 2015, 2: 114–118Google Scholar
  53. 53.
    Xi ZW, Yang L, Wang DY, Pu CD, Shen YM, Wu CD, Peng XG. J Org Chem, 2018, 83: 11886–11895PubMedGoogle Scholar
  54. 54.
    Imamura K, Yoshikawa T, Nakanishi K, Hashimoto K, Kominami H. Chem Commun, 2013, 49: 10911–10913Google Scholar
  55. 55.
    McTiernan CD, Pitre SP, Ismaili H, Scaiano JC. Adv Synth Catal, 2014, 356: 2819–2824Google Scholar
  56. 56.
    Riente P, Pericàs MA. ChemSusChem, 2015, 8: 1841–1844PubMedGoogle Scholar
  57. 57.
    Mao LL, Cong H. ChemSusChem, 2017, 10: 4461–4464PubMedGoogle Scholar
  58. 58.
    Zoller J, Fabry DC, Rueping M. ACS Catal, 2015, 5: 3900–3904Google Scholar
  59. 59.
    Ren L, Cong H. Org Lett, 2018, 20: 3225–3228PubMedGoogle Scholar
  60. 60.
    Hodgson GK, Scaiano JC. ACS Catal, 2018, 8: 2914–2922Google Scholar
  61. 61.
    Shimakoshi H, Hisaeda Y. Angew Chem Int Ed, 2015, 54: 15439–15443Google Scholar
  62. 62.
    Wada E, Tyagi A, Yamamoto A, Yoshida H. Photochem Photobiol Sci, 2017, 16: 1744–1748PubMedGoogle Scholar
  63. 63.
    Lang X, Leow WR, Zhao J, Chen X. Chem Sci, 2015, 6: 1075–1082PubMedGoogle Scholar
  64. 64.
    Lang X, Hao W, Leow WR, Li S, Zhao J, Chen X. Chem Sci, 2015, 6: 5000–5005PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lang X, Zhao J, Chen X. Angew Chem Int Ed, 2016, 55: 4697–4700Google Scholar
  66. 66.
    Bhat VT, Duspara PA, Seo S, Abu Bakar NSB, Greaney MF. Chem Commun, 2015, 51: 4383–4385Google Scholar
  67. 67.
    Aldemir M, Heinemann FW, Kisch H. Photochem Photobiol Sci, 2012, 11: 908–913PubMedGoogle Scholar
  68. 68.
    Manley DW, McBurney RT, Miller P, Howe RF, Rhydderch S, Walton JC. J Am Chem Soc, 2012, 134: 13580–13583PubMedGoogle Scholar
  69. 69.
    Manley DW, McBurney RT, Miller P, Walton JC, Mills A, O’Rourke C. J Org Chem, 2014, 79: 1386–1398PubMedPubMedCentralGoogle Scholar
  70. 70.
    Tang J, Grampp G, Liu Y, Wang BX, Tao FF, Wang LJ, Liang XZ, Xiao HQ, Shen YM. J Org Chem, 2015, 80: 2724–2732PubMedGoogle Scholar
  71. 71.
    Wang J, Mao C, Feng P, Zheng N. Chem Eur J, 2017, 23: 15396–15403PubMedGoogle Scholar
  72. 72.
    Okada Y, Maeta N, Nakayama K, Kamiya H. J Org Chem, 2018, 83: 4948–4962PubMedGoogle Scholar
  73. 73.
    Nakayama K, Maeta N, Horiguchi G, Kamiya H, Okada Y. Org Lett, 2019, 21: 2246–2250PubMedGoogle Scholar
  74. 74.
    Liu W, Wang C, Wang L. Ind Eng Chem Res, 2017, 56: 6114–6123Google Scholar
  75. 75.
    Marinković S, Hoffmann N. Chem Commun, 2001, 1576–1578Google Scholar
  76. 76.
    Marinković S, Hoffmann N. Int J Photoenergy, 2003, 5: 175–182Google Scholar
  77. 77.
    Marinković S, Hoffmann N. Eur J Org Chem, 2004, 2004(14): 3102–3107Google Scholar
  78. 78.
    Wang H, Sakata T, Azuma M, Ohta T, Takaya H. Chem Lett, 1990, 19: 1331–1334Google Scholar
  79. 79.
    Ho XH, Kang MJ, Kim SJ, Park ED, Jang HY. Catal Sci Technol, 2011, 1: 923–926Google Scholar
  80. 80.
    Yoon HS, Ho XH, Jang J, Lee HJ, Kim SJ, Jang HY. Org Lett, 2012, 14: 3272–3275PubMedGoogle Scholar
  81. 81.
    Cherevatskaya M, Neumann M, Füldner S, Harlander C, Kümmel S, Dankesreiter S, Pfitzner A, Zeitler K, König B. Angew Chem Int Ed, 2012, 51: 4062–4066Google Scholar
  82. 82.
    Riente P, Matas Adams A, Albero J, Palomares E, Pericàs MA. Angew Chem Int Ed, 2014, 53: 9613–9616Google Scholar
  83. 83.
    Li X, Wang J, Xu D, Sun Z, Zhao Q, Peng W, Li Y, Zhang G, Zhang F, Fan X. ACS Sustain Chem Eng, 2015, 3: 1017–1022Google Scholar
  84. 84.
    Kohtani S, Kawashima A, Masuda F, Sumi M, Kitagawa Y, Yoshioka E, Hasegawa Y, Miyabe H. Chem Commun, 2018, 54: 12610–12613Google Scholar
  85. 85.
    Weng B, Qi MY, Han C, Tang ZR, Xu YJ. ACS Catal, 2019, 9: 4642–4687Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of PharmacyHyogo University of Health SciencesMinatojima, KobeJapan

Personalised recommendations