Atomic-scale imaging of the defect dynamics in ceria nanowires under heating by in situ aberration-corrected TEM

  • Xiaomin Li
  • Kaihui LiuEmail author
  • Wenlong Wang
  • Xuedong BaiEmail author


The defects in the ceria usually work as the active reaction sites in their industrial applications. In this article, we studied the formation and atomic process of the defects of ceria nanowires under heating by using in situ aberration-corrected transmission electron microscopy (Cs-TEM) method. With the temperature elevating, ceria nanowires are reduced and defects begin to appear and grow up. When temperature reaches 1,023 K, the defect morphology exhibits the rhombus or hexagon patterns, which are surrounded by {111} and {200} planes with lower surface energy, and the heated ceria still maintain the same cubic fluorite structure as their parent. It is also indicated that the formation of defects originates from the release of lattice oxygen and the volatilization of surface Ce ions. This work provides an important insight into designing ceria-based catalysts and ionic conductors.


ceria defects heating in situ transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Program from Chinese Academy of Sciences (ZDYZ2015-1, XDB30000000, XDB07030100, Y8K5261B11), the National Natural Science Foundation of China (21773303, 21872172, 51472267, 51672007, 221322304, 11290161, 51572233, 61574121, 51421002), the National Key Research and Development Program (2016YFA0300804, 2016YFA0300903), and the National Program for Thousand Young Talents of China.

Supplementary material

11426_2019_9624_MOESM1_ESM.pdf (321 kb)
Atomic-scale imaging of the defect dynamics in ceria nanowires under heating by in situ aberration-corrected TEM


  1. 1.
    Trovarelli A. Catal Rev, 1996, 38: 439–520CrossRefGoogle Scholar
  2. 2.
    Zhou Z, Harold MP, Luss D. Appl Catal B-Environ, 2019, 240: 79–91CrossRefGoogle Scholar
  3. 3.
    Aysu T, Fermoso J, Sanna A. J Energy Chem, 2018, 27: 874–882CrossRefGoogle Scholar
  4. 4.
    Yang C, Li Q, Xia Y, Lv K, Li M. Appl Surf Sci, 2019, 464: 388–395CrossRefGoogle Scholar
  5. 5.
    Steele B. Solid State Ion, 2000, 129: 95–110CrossRefGoogle Scholar
  6. 6.
    Park S, Vohs JM, Gorte RJ. Nature, 2000, 404: 265–267PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Deluga GA, Salge JR, Schmidt LD, Verykios XE. Science, 2004, 303: 993–997PubMedCrossRefGoogle Scholar
  8. 8.
    Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O. J Alloys Compd, 2019, 781: 984–1005CrossRefGoogle Scholar
  9. 9.
    Liao L, Mai HX, Yuan Q, Lu HB, Li JC, Liu C, Yan CH, Shen ZX, Yu T. J Phys Chem C, 2008, 112: 9061–9065CrossRefGoogle Scholar
  10. 10.
    Bevan DJM, Kordis J. J Inorg Nucl Chem, 1964, 26: 1509–1523CrossRefGoogle Scholar
  11. 11.
    Zhou K, Wang X, Sun X, Peng Q, Li Y. J Catal, 2005, 229: 206–212CrossRefGoogle Scholar
  12. 12.
    Lin KS, Chowdhury S. Int J Mol Sci, 2010, 11: 3226–3251PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH. J Phys Chem B, 2005, 109: 24380–24385PubMedCrossRefGoogle Scholar
  14. 14.
    Boucher MB, Goergen S, Yi N, Flytzani-Stephanopoulos M. Phys Chem Chem Phys, 2011, 13: 2517–2527PubMedCrossRefGoogle Scholar
  15. 15.
    Yi N, Si R, Saltsburg H, Flytzani-Stephanopoulos M. Energy Environ Sci, 2010, 3: 831–837CrossRefGoogle Scholar
  16. 16.
    Lu X, Zhai T, Cui H, Shi J, Xie S, Huang Y, Liang C, Tong Y. J Mater Chem, 2011, 21: 5569–5572CrossRefGoogle Scholar
  17. 17.
    Tang ZR, Zhang Y, Xu YJ. RSC Adv, 2011, 1: 1772–1777CrossRefGoogle Scholar
  18. 18.
    Yu XF, Mao LB, Ge J, Yu ZL, Liu JW, Yu SH. Sci Bull, 2016, 61: 700–705CrossRefGoogle Scholar
  19. 19.
    Perrichon V, Laachir A, Bergeret G, Fréty R, Tournayan L, Touret O. J Chem Soc Faraday Trans, 1994, 90: 773–781CrossRefGoogle Scholar
  20. 20.
    Xiao W, Guo Q, Wang EG. Chem Phys Lett, 2003, 368: 527–531CrossRefGoogle Scholar
  21. 21.
    Bunluesin T, Gorte RJ, Graham GW. Appl Catal B-Environ, 1997, 14: 105–115CrossRefGoogle Scholar
  22. 22.
    Mamontov E, Egami T, Brezny R, Koranne M, Tyagi S. J Phys Chem B, 2000, 104: 11110–11116CrossRefGoogle Scholar
  23. 23.
    Mikulová J, Rossignol S, Barbier Jr. J, Duprez D, Kappenstein C. Catal Today, 2007, 124: 185–190CrossRefGoogle Scholar
  24. 24.
    Hsiao WI, Lin YS, Chen YC, Lee CS. Chem Phys Lett, 2007, 441: 294–299CrossRefGoogle Scholar
  25. 25.
    Wang ZL, Kang ZC. Functional and Smart Materials: Structural Evolution and Structure Analysis. Volume 4: Fluorite-Type and Related Structure Systems. New York: Plenum Press, 1998. 151–177Google Scholar
  26. 26.
    Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G, Rosei R. Science, 2005, 309: 752–755PubMedCrossRefGoogle Scholar
  27. 27.
    Huang Q, Wang L, Xu Z, Wang W, Bai X. Sci China Chem, 2018, 61: 222–227CrossRefGoogle Scholar
  28. 28.
    Wei JK, Xu Z, Wang H, Wang WL, Bai XD. Sci China Tech Sci, 2016, 59: 1080–1084CrossRefGoogle Scholar
  29. 29.
    Tang M, Zhu B, Meng J, Zhang X, Yuan W, Zhang Z, Gao Y, Wang Y. Mater Today Nano, 2018, 1: 41–46CrossRefGoogle Scholar
  30. 30.
    Epicier T, Aouine M, Cadete Santos Aires FJ, Massin L, Gélin P. Microsc Microanal, 2018, 24: 1648–1649CrossRefGoogle Scholar
  31. 31.
    Crozier PA, Wang R, Sharma R. Ultramicroscopy, 2008, 108: 1432–1440PubMedCrossRefGoogle Scholar
  32. 32.
    Garvie LAJ, Buseck PR. J Phys Chem Solids, 1999, 60: 1943–1947CrossRefGoogle Scholar
  33. 33.
    Gao P, Kang Z, Fu W, Wang W, Bai X, Wang E. J Am Chem Soc, 2010, 132: 4197–4201PubMedCrossRefGoogle Scholar
  34. 34.
    Adachi G, Imanaka N. Chem Rev, 1998, 98: 1479–1514CrossRefGoogle Scholar
  35. 35.
    Hartel P, Rose H, Dinges C. Ultramicroscopy, 1996, 63: 93–114CrossRefGoogle Scholar
  36. 36.
    Pennycook SJ, Rafferty B, Nellist PD. Microsc Microanal, 2002, 6: 343–352CrossRefGoogle Scholar
  37. 37.
    Wang ZL, Feng X. J Phys Chem B, 2003, 107: 13563–13566CrossRefGoogle Scholar
  38. 38.
    Zhang F, Jin Q, Chan SW. J Appl Phys, 2004, 95: 4319–4326CrossRefGoogle Scholar
  39. 39.
    Sharma R, Crozier † PA, Kang ZC, Eyring L. Philos Mag, 2004, 84: 2731–2747CrossRefGoogle Scholar
  40. 40.
    Manoubi T, Colliex C, Rez P. J Electron Spectrosc Relat Phenom, 1990, 50: 1–18CrossRefGoogle Scholar
  41. 41.
    Finazzi M, de Groot FMF, Dias AM, Kappler JP, Schulte O, Felsch W, Krill G. J Electron Spectrosc Relat Phenom, 1996, 78: 221–224CrossRefGoogle Scholar
  42. 42.
    Hull S, Norberg ST, Ahmed I, Eriksson SG, Marrocchelli D, Madden PA. J Solid State Chem, 2009, 182: 2815–2821CrossRefGoogle Scholar
  43. 43.
    Jeanguillaume C, Colliex C. Ultramicroscopy, 1989, 28: 252–257CrossRefGoogle Scholar
  44. 44.
    Hunt JA, Williams DB. Ultramicroscopy, 1991, 38: 47–73CrossRefGoogle Scholar
  45. 45.
    Turner S, Lazar S, Freitag B, Egoavil R, Verbeeck J, Put S, Strauven Y, Van Tendeloo G. Nanoscale, 2011, 3: 3385–3390PubMedCrossRefGoogle Scholar
  46. 46.
    Tan H, Turner S, Yücelen E, Verbeeck J, Van Tendeloo G. Phys Rev Lett, 2011, 107: 107602PubMedCrossRefGoogle Scholar
  47. 47.
    Campbell CT, Peden CHF. Science, 2005, 309: 713–714PubMedCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.International Center for Quantum Materials and School of PhysicsPeking UniversityBeijingChina
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Songshan Lake Materials LaboratoryDongguanChina
  4. 4.School of Physical ScienceUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations