A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency

  • Lijiao Ma
  • Ye Xu
  • Yunfei Zu
  • Qing Liao
  • Bowei Xu
  • Cunbin An
  • Shaoqing ZhangEmail author
  • Jianhui Hou


In order to meet the requirements for making organic solar cells (OSCs) through solution printing techniques, great efforts have been devoted into developing high performance OSCs with relatively thicker active layers. In this work, a thick-film (300 nm) ternary OSC with a power conversion efficiency of 14.3% is fabricated by introducing phenyl-C61-butyric-acid-methyl ester (PC61BM) into a PBDB-T-2Cl:BTP-4F host blend. The addition of PC61BM is found to be helpful for improving the hole and electron mobilities, and thus facilitates charge transport as well as suppresses charge recombination in the active layers, leading to the improved efficiencies of OSCs with relatively thicker active layers. Our results demonstrate the feasibility of employing fullerene derivative PC61BM to construct a high-efficiency thick-film ternary device, which would promote the development of thick layer ternary OSCs to fulfill the requirements of future roll to roll production.


ternary organic solar cells thick active layers carrier mobilities high efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21835006, 21704004, 91633301, 51673201), the Chinese Academy of Sciences (KJZD-EW-J01). We would like to thank the Innovation Project supported by Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201903)

Supplementary material

11426_2019_9556_MOESM1_ESM.pdf (671 kb)
A Ternary Organic Solar Cell with 300 nm Thick Active Layer Shows Over 14% Efficiency


  1. 1.
    Heeger AJ. Chem Soc Rev, 2010, 39: 2354CrossRefGoogle Scholar
  2. 2.
    Mazzio KA, Luscombe CK. Chem Soc Rev, 2015, 44: 78–90CrossRefGoogle Scholar
  3. 3.
    Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 394–412CrossRefGoogle Scholar
  4. 4.
    Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161CrossRefGoogle Scholar
  5. 5.
    Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791CrossRefGoogle Scholar
  6. 6.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  7. 7.
    Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151CrossRefGoogle Scholar
  8. 8.
    Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752CrossRefGoogle Scholar
  9. 9.
    Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457CrossRefGoogle Scholar
  10. 10.
    Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003CrossRefGoogle Scholar
  11. 11.
    Steirer KX, Ndione PF, Widjonarko NE, Lloyd MT, Meyer J, Ratcliff EL, Kahn A, Armstrong NR, Curtis CJ, Ginley DS, Berry JJ, Olson DC. Adv Energy Mater, 2011, 1: 813–820CrossRefGoogle Scholar
  12. 12.
    Zhang, K, Huang, F, Cao, Y. Acta Polymerica Sinica, 2017(9): 1400–1414Google Scholar
  13. 13.
    Kang Q, Yang B, Xu Y, Xu B, Hou J. Adv Mater, 2018, 30: 1801718CrossRefGoogle Scholar
  14. 14.
    Huang J, Wang H, Yan K, Zhang X, Chen H, Li CZ, Yu J. Adv Mater, 2017, 29: 1606729CrossRefGoogle Scholar
  15. 15.
    Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip HL, Peng X, Cao Y, Chen Y. Nat Photon, 2017, 11: 85–90CrossRefGoogle Scholar
  16. 16.
    Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098CrossRefGoogle Scholar
  17. 17.
    Dennler G, Scharber MC, Brabec CJ. Adv Mater, 2009, 21: 1323–1338CrossRefGoogle Scholar
  18. 18.
    Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC. Mater Today, 2012, 15: 36–49CrossRefGoogle Scholar
  19. 19.
    Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387–2395CrossRefGoogle Scholar
  20. 20.
    Jin Y, Chen Z, Xiao M, Peng J, Fan B, Ying L, Zhang G, Jiang XF, Yin Q, Liang Z, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1700944CrossRefGoogle Scholar
  21. 21.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293CrossRefGoogle Scholar
  22. 22.
    Price SC, Stuart AC, Yang L, Zhou H, You W. J Am Chem Soc, 2011, 133: 4625–4631CrossRefGoogle Scholar
  23. 23.
    Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, Peng J, Ma Y, Cao Y. Adv Mater, 2014, 26: 2586–2591CrossRefGoogle Scholar
  24. 24.
    Hu X, Yi C, Wang M, Hsu CH, Liu S, Zhang K, Zhong C, Huang F, Gong X, Cao Y. Adv Energy Mater, 2014, 4: 1400378CrossRefGoogle Scholar
  25. 25.
    Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28: 7521–7526CrossRefGoogle Scholar
  26. 26.
    Krebs FC. Sol Energy Mater Sol Cells, 2009, 93: 465–475CrossRefGoogle Scholar
  27. 27.
    Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2019, 48: 1596–1625CrossRefGoogle Scholar
  28. 28.
    Luo Z, Sun C, Chen S, Zhang ZG, Wu K, Qiu B, Yang C, Li Y, Yang C. Adv Energy Mater, 2018, 8: 1800856CrossRefGoogle Scholar
  29. 29.
    Zhang T, Zeng G, Ye F, Zhao X, Yang X. Adv Energy Mater, 2018, 8: 1801387CrossRefGoogle Scholar
  30. 30.
    Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum TC, Russell TP, Li Y. Adv Mater, 2018, 30: 1704546CrossRefGoogle Scholar
  31. 31.
    Duan C, Peng Z, Colberts FJM, Pang S, Ye L, Awartani OM, Hendriks KH, Ade H, Wienk MM, Janssen RAJ. ACS Appl Mater Interfaces, 2019, 11: 10794–10800CrossRefGoogle Scholar
  32. 32.
    Wang Z, Liu X, Jiang H, Zhou X, Zhang L, Pan F, Qiao X, Ma D, Ma W, Ding L, Cao Y, Chen J. Sol RRL, 2019, 3: 1900079CrossRefGoogle Scholar
  33. 33.
    Gasparini N, Salleo A, McCulloch I, Baran D. Nat Rev Mater, 2019, 4: 229–242Google Scholar
  34. 34.
    Yu R, Yao H, Hou J. Adv Energy Mater, 2018, 8: 1702814CrossRefGoogle Scholar
  35. 35.
    Cheng P, Zhan X. Mater Horiz, 2015, 2: 462–485CrossRefGoogle Scholar
  36. 36.
    Dai S, Li T, Wang W, Xiao Y, Lau TK, Li Z, Liu K, Lu X, Zhan X. Adv Mater, 2018, 30: 1706571CrossRefGoogle Scholar
  37. 37.
    Liang RZ, Zhang Y, Savikhin V, Babics M, Kan Z, Wohlfahrt M, Wehbe N, Liu S, Duan T, Toney MF, Laquai F, Beaujuge PM. Adv Energy Mater, 2019, 9: 1802836CrossRefGoogle Scholar
  38. 38.
    Shi H, Xia R, Zhang G, Yip HL, Cao Y. Adv Energy Mater, 2019, 9: 1803438CrossRefGoogle Scholar
  39. 39.
    Zhou Z, Xu S, Song J, Jin Y, Yue Q, Qian Y, Liu F, Zhang F, Zhu X. Nat Energy, 2018, 3: 952–959CrossRefGoogle Scholar
  40. 40.
    Huang D, Bian F, Zhu D, Bao X, Hong C, Zhou P, Huang Y, Yang C. J Phys Chem C, 2019, 123: 14976–14984CrossRefGoogle Scholar
  41. 41.
    Zhao W, Li S, Zhang S, Liu X, Hou J. Adv Mater, 2017, 29: 1604059CrossRefGoogle Scholar
  42. 42.
    Lu H, Zhang J, Chen J, Liu Q, Gong X, Feng S, Xu X, Ma W, Bo Z. Adv Mater, 2016, 28: 9559–9566CrossRefGoogle Scholar
  43. 43.
    Amorim CA, Cavallari MR, Santos G, Fonseca FJ, Andrade AM, Mergulhão S. J Non-Crystalline Solids, 2012, 358: 484–491CrossRefGoogle Scholar
  44. 44.
    Goh C, Kline RJ, McGehee MD, Kadnikova EN, Fréchet JMJ. Appl Phys Lett, 2005, 86: 122110CrossRefGoogle Scholar
  45. 45.
    Bartelt JA, Lam D, Burke TM, Sweetnam SM, McGehee MD. Adv Energy Mater, 2015, 5: 1500577CrossRefGoogle Scholar
  46. 46.
    Proctor CM, Love JA, Nguyen TQ. Adv Mater, 2014, 26: 5957–5961CrossRefGoogle Scholar
  47. 47.
    Kirchartz T, Agostinelli T, Campoy-Quiles M, Gong W, Nelson J. J Phys Chem Lett, 2012, 3: 3470–3475CrossRefGoogle Scholar
  48. 48.
    Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207CrossRefGoogle Scholar
  49. 49.
    Zhang H, Yao H, Zhao W, Ye L, Hou J. Adv Energy Mater, 2016, 6: 1502177CrossRefGoogle Scholar
  50. 50.
    Chen LM, Hong Z, Li G, Yang Y. Adv Mater, 2009, 21: 1434–1449CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lijiao Ma
    • 1
    • 3
  • Ye Xu
    • 1
    • 3
  • Yunfei Zu
    • 1
    • 3
  • Qing Liao
    • 1
    • 3
  • Bowei Xu
    • 1
  • Cunbin An
    • 1
  • Shaoqing Zhang
    • 1
    • 2
    Email author
  • Jianhui Hou
    • 1
    • 3
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistry Chinese Academy of SciencesBeijingChina
  2. 2.School of Chemistry and Biology EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations