Advertisement

Isothianaphthene diimide: an air-stable n-type semiconductor

  • Xiaolong Chen
  • Yaowu He
  • Muhammad Umair Ali
  • Yu He
  • Yanan Zhu
  • Aiyuan Li
  • Changbin Zhao
  • Igor F. Perepichka
  • Hong MengEmail author
Communications
  • 30 Downloads

Abstract

Herein, we propose a new strategy to develop air-stable n-type organic semiconductors with non-classical thiophene aromatic diimide derivatives by replacing aromatic naphthalene with a heteroaromatic isothianaphthene core. We designed and successfully synthesized the isothianaphthene core based diimide material, N,N′-bis(n-hexyl)isothianaphthene-2,3,6,7-tetra-carboxylic acid diimide (BTDI-C6) as an n-type semiconductor. Compared to N,N′-bis(n-hexyl)naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-C6), BTDI-C6 possesses a deeper LUMO energy level of −4.21 eV, which is 0.32 eV lower than that of NDI-C6. Both molecular modelling and experimental results elucidated that organic thin film transistors (OTFTs) based on both of these materials exhibit comparable mobilities; however, the threshold voltage of BTDI-C6 based device (+7.5 V) is significantly lower than that of NDI-C6 based counterpart (+34 V). Moreover, the low-lying LUMO energy level of BTDI-C6 ensures excellent air-stability which is further validated by the device performance. In addition, BTDI-C6 shows high luminescence while NDI-C6 is not luminescent at all in solution, which reveals the potential application of our newly synthesized material in n-type light-emitting transistors.

En

isothianaphthene non-classical imide n-type 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by Shenzhen Science and Technology (JCYJ20170412151139619), Shenzhen Engineering Laboratory (Shenzhen development and reform commission [2016]1592), Guangdong Key Research Project (2019B010924003), Guangdong International Science Collaboration Base (2019A050505003), and Shenzhen Peacock Plan (KQTD2014062714543296).

Supplementary material

11426_2019_9555_MOESM1_ESM.doc (4 mb)
Isothianaphthene diimide: an air-stable n-type semiconductor

References

  1. 1.
    Guo X, Facchetti A, Marks TJ. Chem Rev, 2014, 114: 8943–9021CrossRefGoogle Scholar
  2. 2.
    Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A. Nature, 2000, 404: 478–481CrossRefGoogle Scholar
  3. 3.
    Gao X, Hu Y. J Mater Chem C, 2014, 2: 3099–3117CrossRefGoogle Scholar
  4. 4.
    Dhar J, Salzner U, Patil S. J Mater Chem C, 2017, 5: 7404–7430CrossRefGoogle Scholar
  5. 5.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267CrossRefGoogle Scholar
  6. 6.
    Klauk H. Chem Soc Rev, 2010, 39: 2643–2666CrossRefGoogle Scholar
  7. 7.
    Li H, Shi W, Song J, Jang HJ, Dailey J, Yu J, Katz HE. Chem Rev, 2019, 119: 3–35CrossRefGoogle Scholar
  8. 8.
    Chen XK, Zou LY, Guo JF, Ren AM. J Mater Chem, 2012, 22: 6471–6484CrossRefGoogle Scholar
  9. 9.
    Chen W, Zhang J, Long G, Liu Y, Zhang Q. J Mater Chem C, 2015, 3: 8219–8224CrossRefGoogle Scholar
  10. 10.
    Gao X, Zhao Z. Sci China Chem, 2015, 58: 947–968CrossRefGoogle Scholar
  11. 11.
    Shoji T, Ito S. Sci China Chem, 2018, 61: 973–974CrossRefGoogle Scholar
  12. 12.
    Said AA, Xie J, Wang Y, Wang Z, Zhou Y, Zhao K, Gao WB, Michinobu T, Zhang Q. Small, 2019, 15: 1803339CrossRefGoogle Scholar
  13. 13.
    Shukla D, Nelson SF, Freeman DC, Rajeswaran M, Ahearn WG, Meyer DM, Carey JT. Chem Mater, 2008, 20: 7486–7491CrossRefGoogle Scholar
  14. 14.
    Chang YC, Kuo MY, Chen CP, Lu HF, Chao I. J Phys Chem C, 2010, 114: 11595–11601CrossRefGoogle Scholar
  15. 15.
    Zhang D, Zhao L, Zhu Y, Li A, He C, Yu H, He Y, Yan C, Goto O, Meng H. ACS Appl Mater Interfaces, 2016, 8: 18277–18283CrossRefGoogle Scholar
  16. 16.
    Usta H, Risko C, Wang Z, Huang H, Deliomeroglu MK, Zhukhovitskiy A, Facchetti A, Marks TJ. J Am Chem Soc, 2009, 131: 5586–5608CrossRefGoogle Scholar
  17. 17.
    Zhou K, Chen H, Dong H, Fang Q, Hu W. Sci China Chem, 2017, 60: 510–515CrossRefGoogle Scholar
  18. 18.
    Oh JH, Suraru SL, Lee WY, Könemann M, Höffken HW, Röger C, Schmidt R, Chung Y, Chen WC, Würthner F, Bao Z. Adv Funct Mater, 2010, 20: 2148–2156CrossRefGoogle Scholar
  19. 19.
    Chen W, Nakano M, Kim JH, Takimiya K, Zhang Q. J Mater Chem C, 2016, 4: 8879–8883CrossRefGoogle Scholar
  20. 20.
    Chen W, Nakano M, Takimiya K, Zhang Q. Org Chem Front, 2017, 4: 704–710CrossRefGoogle Scholar
  21. 21.
    Gao X, Di C, Hu Y, Yang X, Fan H, Zhang F, Liu Y, Li H, Zhu D. J Am Chem Soc, 2010, 132: 3697–3699CrossRefGoogle Scholar
  22. 22.
    Zhang F, Hu Y, Schuettfort T, Di C, Gao X, McNeill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338–2349CrossRefGoogle Scholar
  23. 23.
    Fukutomi Y, Nakano M, Hu JY, Osaka I, Takimiya K. J Am Chem Soc, 2013, 135: 11445–11448CrossRefGoogle Scholar
  24. 24.
    Cui X, Xiao C, Winands T, Koch T, Li Y, Zhang L, Doltsinis NL, Wang Z. J Am Chem Soc, 2018, 140: 12175–12180CrossRefGoogle Scholar
  25. 25.
    Amaresh RR, Lakshmikantham MV, Baldwin JW, Cava MP, Metzger RM, Rogers RD. J Org Chem, 2002, 67: 2453–2458CrossRefGoogle Scholar
  26. 26.
    Fabian J, Hess BA. J Org Chem, 1997, 62: 1766–1774CrossRefGoogle Scholar
  27. 27.
    de Heer J. J Am Chem Soc, 1954, 76: 4802–4806CrossRefGoogle Scholar
  28. 28.
    Wudl F, Kobayashi M, Heeger AJ. J Org Chem, 1984, 49: 3382–3384CrossRefGoogle Scholar
  29. 29.
    Meng H, Wudl F. Macromolecules, 2001, 34: 1810–1816CrossRefGoogle Scholar
  30. 30.
    Qin Y, Kim JY, Frisbie CD, Hillmyer MA. Macromolecules, 2008, 41: 5563–5570CrossRefGoogle Scholar
  31. 31.
    Kim JY, Qin Y, Stevens DM, Kalihari V, Hillmyer MA, Frisbie CD. J Phys Chem C, 2009, 113: 21928–21936CrossRefGoogle Scholar
  32. 32.
    Long G, Wan X, Zhou J, Liu Y, Li Z, He G, Zhang M, Hou Y, Chen Y. Macromol Chem Phys, 2012, 213: 1596–1603CrossRefGoogle Scholar
  33. 33.
    Yu CP, Kimura R, Kurosawa T, Fukuzaki E, Watanabe T, Ishii H, Kumagai S, Yano M, Takeya J, Okamoto T. Org Lett, 2019, 21: 4448–4453CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaolong Chen
    • 1
  • Yaowu He
    • 1
  • Muhammad Umair Ali
    • 2
  • Yu He
    • 1
  • Yanan Zhu
    • 1
  • Aiyuan Li
    • 1
  • Changbin Zhao
    • 1
  • Igor F. Perepichka
    • 3
  • Hong Meng
    • 1
    Email author
  1. 1.School of Advanced MaterialsPeking University Shenzhen Graduated SchoolShenzhenChina
  2. 2.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.Shaanxi Institute of Flexible ElectronicsNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations