Advertisement

Ion current rectification: from nanoscale to microscale

  • Tianyi Xiong
  • Kailin Zhang
  • Yanan Jiang
  • Ping YuEmail author
  • Lanqun MaoEmail author
Reviews
  • 44 Downloads

Abstract

Ion current rectification (ICR) is an electrodynamic phenomenon in electrolyte solution which is defined as the asymmetric potential-dependent ion flux through a confined environment, giving rise to asymmetric electrical current-voltage characteristics induced by the influence of an asymmetric electrical double layer structure. Since the discovery of the ICR phenomenon, the observation and application of ICR at nanoscale and microscale have been widely investigated experimentally and theoretically. Here, the recent progress of ICR from nanoscale to microscale is systematically reviewed. Nano/micropore structures of different materials, shapes and pore sizes are first discussed. Then, the factors influencing ICRs by thermodynamically or kinetically regulating the electrical double layer structure are introduced. Moreover, theoretical models are presented to explain the mechanism of ICRs. Based on the understanding of this phenomenon, the applications, especially in biosensors, are discussed. Finally, future developments of this area are briefly presented. This review covers the representative related literature published since 2010 and is intended to give a systematic introduction to this area.

Keywords

ion current rectification ion transport nanopore nanochannel micropipette 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21775151, 21790053, 21475138 for P.Y., 21790390, 21790391, 21435007, 21621062 for L.M.), the National Basic Research Program of China (2016YFA0200104), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB30000000), and the Chinese Academy of Sciences (QYZDJSSW-SLH030).

References

  1. 1.
    Lan WJ, Edwards MA, Luo L, Perera RT, Wu X, Martin CR, White HS. Acc Chem Res, 2016, 49: 2605–2613CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang Z, Wen L, Jiang L. Chem Soc Rev, 2018, 47: 322–356CrossRefPubMedGoogle Scholar
  3. 3.
    Martin CR, Siwy ZS. Science, 2007, 317: 331–332CrossRefPubMedGoogle Scholar
  4. 4.
    Pérez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O. Chem Sci, 2017, 8: 890–913CrossRefPubMedGoogle Scholar
  5. 5.
    Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y. Nature, 2017, 550: 380–383CrossRefPubMedGoogle Scholar
  6. 6.
    Mouterde T, Keerthi A, Poggioli AR, Dar SA, Siria A, Geim AK, Bocquet L, Radha B. Nature, 2019, 567: 87–90CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang H, Tian Y, Jiang L. Nano Today, 2016, 11: 61–81CrossRefGoogle Scholar
  8. 8.
    Lin CY, Combs C, Su YS, Yeh LH, Siwy ZS. J Am Chem Soc, 2019, 141: 3691–3698CrossRefPubMedGoogle Scholar
  9. 9.
    Xie G, Li P, Zhao Z, Zhu Z, Kong XY, Zhang Z, Xiao K, Wen L, Jiang L. Am Chem Soc, 2018, 140: 4552–4559CrossRefGoogle Scholar
  10. 10.
    Vlassiouk I, Siwy ZS. Nano Lett, 2007, 7: 552–556CrossRefPubMedGoogle Scholar
  11. 11.
    Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS. Nat Nanotech, 2008, 3: 51–57CrossRefGoogle Scholar
  12. 12.
    Zhang H, Hou J, Ou R, Hu Y, Wang H, Jiang L. Nanoscale, 2017, 9: 7297–7304CrossRefPubMedGoogle Scholar
  13. 13.
    Wang D, Kvetny M, Liu J, Brown W, Li Y, Wang G. Am Chem Soc, 2012, 134: 3651–3654CrossRefGoogle Scholar
  14. 14.
    Zhang P, Xia M, Zhuge F, Zhou Y, Wang Z, Dong B, Fu Y, Yang K, Li Y, He Y, Scheicher RH, Miao XS. Nano Lett, 2019, 19: 4279–4286CrossRefPubMedGoogle Scholar
  15. 15.
    Acar ET, Buchsbaum SF, Combs C, Fornasiero F, Siwy ZS. Sci Adv, 2019, 5: eaav2568CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. Anal Chem, 2015, 87: 172–187CrossRefPubMedGoogle Scholar
  17. 17.
    Wei C, Bard AJ, Feldberg SW. Anal Chem, 1997, 69: 4627–4633CrossRefGoogle Scholar
  18. 18.
    Luo L, Holden DA, Lan WJ, White HS. ACS Nano, 2012, 6: 6507–6514CrossRefPubMedGoogle Scholar
  19. 19.
    Luo L, Holden DA, White HS. ACS Nano, 2014, 8: 3023–3030CrossRefPubMedGoogle Scholar
  20. 20.
    Wang D, Liu J, Kvetny M, Li Y, Brown W, Wang G. Chem Sci, 2014, 5: 1827–1832CrossRefGoogle Scholar
  21. 21.
    Wang J, Fang R, Hou J, Zhang H, Tian Y, Wang H, Jiang L. ACS Nano, 2017, 11: 3022–3029CrossRefPubMedGoogle Scholar
  22. 22.
    Deng XL, Takami T, Son JW, Kawai T, Park BH. J Phys Chem C, 2012, 116: 14857–14862CrossRefGoogle Scholar
  23. 23.
    Wang D, Brown W, Li Y, Kvetny M, Liu J, Wang G. ChemElectroChem, 2018, 5: 3089–3095CrossRefGoogle Scholar
  24. 24.
    Siwy Z. Adv Funct Mater, 2006, 16: 735–746CrossRefGoogle Scholar
  25. 25.
    Liu Q, Wang Y, Guo W, Ji H, Xue J, Ouyang Q. Phys Rev E, 2007, 75: 051201CrossRefGoogle Scholar
  26. 26.
    Liu M, Zhang H, Li K, Heng L, Wang S, Tian Y, Jiang L. Adv Funct Mater, 2015, 25: 421–426CrossRefGoogle Scholar
  27. 27.
    Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ. Biosens Bioelectron, 2015, 71: 37–43CrossRefPubMedGoogle Scholar
  28. 28.
    Guo Z, Wang J, Ren J, Wang E. Nanoscale, 2011, 3: 3767–3773CrossRefPubMedGoogle Scholar
  29. 29.
    Siwy ZS, Howorka S. Chem Soc Rev, 2010, 39: 1115–1132CrossRefPubMedGoogle Scholar
  30. 30.
    Xiao K, Wen L, Jiang L. Small, 2016, 12: 2810–2831CrossRefPubMedGoogle Scholar
  31. 31.
    Wen L, Jiang L. Natl Sci Rev, 2014, 1: 144–156CrossRefGoogle Scholar
  32. 32.
    Li T, He X, Yu P, Mao L. Electroanalysis, 2015, 27: 879–883CrossRefGoogle Scholar
  33. 33.
    Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS. Anal Chem, 2007, 79: 4778–4787CrossRefPubMedGoogle Scholar
  34. 34.
    Jin P, Mukaibo H, Horne LP, Bishop GW, Martin CR. J Am Chem Soc, 2010, 132: 2118–2119CrossRefPubMedGoogle Scholar
  35. 35.
    Lemay SG, van den Broek DM, Storm AJ, Krapf D, Smeets RMM, Heering HA, Dekker C. Anal Chem, 2005, 77: 1911–1915CrossRefPubMedGoogle Scholar
  36. 36.
    Wu MY, Krapf D, Zandbergen M, Zandbergen H, Batson PE. Appl Phys Lett, 2005, 87: 113106CrossRefGoogle Scholar
  37. 37.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Nature, 2001, 412: 166–169CrossRefGoogle Scholar
  38. 38.
    Ma J, Li K, Li Z, Qiu Y, Si W, Ge Y, Sha J, Liu L, Xie X, Yi H, Ni Z, Li D, Chen Y. J Am Chem Soc, 2019, 141: 4264–4272CrossRefPubMedGoogle Scholar
  39. 39.
    Feng J, Liu K, Graf M, Dumcenco D, Kis A, Di Ventra M, Radenovic A. Nat Mater, 2016, 15: 850–855CrossRefPubMedGoogle Scholar
  40. 40.
    Kim MJ, McNally B, Murata K, Meller A. Nanotechnology, 2007, 18: 205302CrossRefGoogle Scholar
  41. 41.
    Gunderson CG, Barlow ST, Zhang B. J Electroanal Chem, 2019, 833: 181–188CrossRefGoogle Scholar
  42. 42.
    Duan C, Majumdar A. Nat Nanotech, 2010, 5: 848–852CrossRefGoogle Scholar
  43. 43.
    Yusko EC, An R, Mayer M. ACS Nano, 2010, 4: 477–487CrossRefPubMedGoogle Scholar
  44. 44.
    Qiu Y, Lucas RA, Siwy ZS. J Phys Chem Lett, 2017, 8: 3846–3852CrossRefPubMedGoogle Scholar
  45. 45.
    Ali M, Schiedt B, Healy K, Neumann R, Ensinger W. Nanotechnology, 2008, 19: 085713CrossRefPubMedGoogle Scholar
  46. 46.
    Siwy Z, Apel P, Baur D, Dobrev DD, Korchev YE, Neumann R, Spohr R, Trautmann C, Voss KO. Surf Sci, 2003, 532–535: 1061–1066CrossRefGoogle Scholar
  47. 47.
    Woermann D. Phys Chem Chem Phys, 2004, 6: 3130–3132CrossRefGoogle Scholar
  48. 48.
    Wu X, Ramiah Rajasekaran P, Martin CR. ACS Nano, 2016, 10: 4637–4643CrossRefPubMedGoogle Scholar
  49. 49.
    Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS. Nat Nanotech, 2011, 6: 798–802CrossRefGoogle Scholar
  50. 50.
    Wang D, Mirkin MV. J Am Chem Soc, 2017, 139: 11654–11657CrossRefPubMedGoogle Scholar
  51. 51.
    Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT. J Am Chem Soc, 2018, 140: 5385–5392CrossRefPubMedGoogle Scholar
  52. 52.
    Nascimento RAS, Özel RE, Mak WH, Mulato M, Singaram B, Pourmand N. Nano Lett, 2016, 16: 1194–1200CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Song J, Xu CH, Huang SZ, Lei W, Ruan YF, Lu HJ, Zhao W, Xu JJ, Chen HY. Angew Chem Int Ed, 2018, 57: 13226–13230CrossRefGoogle Scholar
  54. 54.
    Zhang K, He X, Liu Y, Yu P, Fei J, Mao L. Anal Chem, 2017, 89: 6794–6799CrossRefPubMedGoogle Scholar
  55. 55.
    Chang F, Chen C, Xie X, Chen L, Li M, Zhu Z. Chem Commun, 2015, 51: 15316–15319CrossRefGoogle Scholar
  56. 56.
    Liu S, Dong Y, Zhao W, Xie X, Ji T, Yin X, Liu Y, Liang Z, Momotenko D, Liang D, Girault HH, Shao Y. Anal Chem, 2012, 84: 5565–5573CrossRefPubMedGoogle Scholar
  57. 57.
    He X, Zhang K, Li T, Jiang Y, Yu P, Mao L. J Am Chem Soc, 2017, 139: 1396–1399CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang S, Yin X, Li M, Zhang X, Zhang X, Qin X, Zhu Z, Yang S, Shao Y. Anal Chem, 2018, 90: 8592–8599CrossRefPubMedGoogle Scholar
  59. 59.
    Lin CY, Yeh LH, Siwy ZS. J Phys Chem Lett, 2018, 9: 393–398CrossRefPubMedGoogle Scholar
  60. 60.
    Ramírez P, Apel PY, Cervera J, Mafé S. Nanotechnology, 2008, 19: 315707CrossRefPubMedGoogle Scholar
  61. 61.
    Apel PY, Blonskaya IV, Orelovitch OL, Ramirez P, Sartowska BA. Nanotechnology, 2011, 22: 175302CrossRefPubMedGoogle Scholar
  62. 62.
    Kovarik ML, Zhou K, Jacobson SC. J Phys Chem B, 2009, 113: 15960–15966CrossRefPubMedGoogle Scholar
  63. 63.
    Jiang Y, Feng Y, Su J, Nie J, Cao L, Mao L, Jiang L, Guo W. J Am Chem Soc, 2017, 139: 18739–18746CrossRefPubMedGoogle Scholar
  64. 64.
    Schoch RB, Han J, Renaud P. Rev Mod Phys, 2008, 80: 839–883CrossRefGoogle Scholar
  65. 65.
    Siwy Z, Fuliński A. Phys Rev Lett, 2002, 89: 198103CrossRefPubMedGoogle Scholar
  66. 66.
    Cheng L, Guo L. Nano Lett, 2007, 7: 3165–3171CrossRefPubMedGoogle Scholar
  67. 67.
    Jung JY, Joshi P, Petrossian L, Thornton TJ, Posner JD. Anal Chem, 2009, 81: 3128–3133CrossRefPubMedGoogle Scholar
  68. 68.
    Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR. J Am Chem Soc, 2004, 126: 10850–10851CrossRefPubMedGoogle Scholar
  69. 69.
    Daiguji H. Chem Soc Rev, 2010, 39: 901–911CrossRefPubMedGoogle Scholar
  70. 70.
    Liu J, Wang D, Kvetny M, Brown W, Li Y, Wang G. Langmuir, 2013, 29: 8743–8752CrossRefPubMedGoogle Scholar
  71. 71.
    He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS. J Am Chem Soc, 2009, 131: 5194–5202CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    He X, Zhang K, Liu Y, Wu F, Yu P, Mao L. Angew Chem Int Ed, 2018, 57: 4590–4593CrossRefGoogle Scholar
  73. 73.
    White HS, Bund A. Langmuir, 2008, 24: 2212–2218CrossRefPubMedGoogle Scholar
  74. 74.
    Lan WJ, Holden DA, White HS. J Am Chem Soc, 2011, 133: 13300–13303CrossRefPubMedGoogle Scholar
  75. 75.
    Guerrette JP, Zhang B. J Am Chem Soc, 2010, 132: 17088–17091CrossRefPubMedGoogle Scholar
  76. 76.
    Momotenko D, Girault HH. J Am Chem Soc, 2011, 133: 14496–14499CrossRefPubMedGoogle Scholar
  77. 77.
    Woermann D. Phys Chem Chem Phys, 2003, 5: 1853–1858CrossRefGoogle Scholar
  78. 78.
    Jiang X, Liu Y, Qiao R. J Phys Chem C, 2016, 120: 4629–4637CrossRefGoogle Scholar
  79. 79.
    Poggioli AR, Siria A, Bocquet L. J Phys Chem B, 2019, 123: 1171–1185CrossRefPubMedGoogle Scholar
  80. 80.
    Cervera J, Schiedt B, Ramírez P. Europhys Lett, 2005, 71: 35–41CrossRefGoogle Scholar
  81. 81.
    Cruz-Chu ER, Ritz T, Siwy ZS, Schulten K. Faraday Discuss, 2009, 143: 47–62CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Feng J, Graf M, Liu K, Ovchinnikov D, Dumcenco D, Heiranian M, Nandigana V, Aluru NR, Kis A, Radenovic A. Nature, 2016, 536: 197–200CrossRefPubMedGoogle Scholar
  83. 83.
    Vlassiouk I, Smirnov S, Siwy Z. Nano Lett, 2008, 8: 1978–1985CrossRefPubMedGoogle Scholar
  84. 84.
    Wang Y, Shan X, Tao N. Faraday Discuss, 2016, 193: 9–39CrossRefPubMedGoogle Scholar
  85. 85.
    Yu RJ, Ying YL, Gao R, Long YT. Angew Chem Int Ed, 2019, 58: 3706–3714CrossRefGoogle Scholar
  86. 86.
    Yu RJ, Ying YL, Hu YX, Gao R, Long YT. Anal Chem, 2017, 89: 8203–8206CrossRefPubMedGoogle Scholar
  87. 87.
    Gao R, Ying YL, Hu YX, Li YJ, Long YT. Anal Chem, 2017, 89: 7382–7387CrossRefPubMedGoogle Scholar
  88. 88.
    Ying Y, Cao C, Hu Y, Long Y. Natl Sci Rev, 2018, 5: 449–452CrossRefGoogle Scholar
  89. 89.
    Liu Y, Xu C, Yu P, Chen X, Wang J, Mao L. ChemElectroChem, 2018, 5: 2954–2962CrossRefGoogle Scholar
  90. 90.
    Mirkin MV, Sun T, Yu Y, Zhou M. Acc Chem Res, 2016, 49: 2328–2335CrossRefPubMedGoogle Scholar
  91. 91.
    Yin H, Marshall D. Curr Opin Biotech, 2012, 23: 110–119CrossRefPubMedGoogle Scholar
  92. 92.
    Lan WJ, Holden DA, Zhang B, White HS. Anal Chem, 2011, 83: 3840–3847CrossRefPubMedGoogle Scholar
  93. 93.
    Li T, He X, Zhang K, Wang K, Yu P, Mao L. Chem Sci, 2016, 7: 6365–6368CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Shi W, Friedman AK, Baker LA. Anal Chem, 2017, 89: 157–188CrossRefPubMedGoogle Scholar
  95. 95.
    Gu Z, Ying YL, Long YT. Sci China Chem, 2018, 61: 1483–1485CrossRefGoogle Scholar
  96. 96.
    Luo L, German SR, Lan WJ, Holden DA, Mega TL, White HS. Annu Rev Anal Chem, 2014, 7: 513–535CrossRefGoogle Scholar
  97. 97.
    Xia F, Guo W, Mao Y, Hou X, Xue J, Xia H, Wang L, Song Y, Ji H, Ouyang Q, Wang Y, Jiang L. J Am Chem Soc, 2008, 130: 8345–8350CrossRefPubMedGoogle Scholar
  98. 98.
    Gao L, Li P, Zhang Y, Xiao K, Ma J, Xie G, Hou G, Zhang Z, Wen L, Jiang L. Small, 2015, 11: 543–547CrossRefPubMedGoogle Scholar
  99. 99.
    Zhai Q, Zhang S, Jiang H, Wei Q, Wang E, Wang J. J Mater Chem B, 2014, 2: 6371–6377CrossRefGoogle Scholar
  100. 100.
    Tian Y, Hou X, Wen L, Guo W, Song Y, Sun H, Wang Y, Jiang L, Zhu D. Chem Commun, 2010, 46: 1682–1684CrossRefGoogle Scholar
  101. 101.
    Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y, Wen L, Wang L, Cao L, Yang Y, Xue J, Song Y, Wang Y, Liu D, Jiang L. J Am Chem Soc, 2009, 131: 7800–7805CrossRefPubMedGoogle Scholar
  102. 102.
    Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong XY, Xie G, Zhang Z, Bo Z, Jiang L. J Am Chem Soc, 2015, 137: 11976–11983CrossRefPubMedGoogle Scholar
  103. 103.
    Liu Q, Xiao K, Wen L, Dong Y, Xie G, Zhang Z, Bo Z, Jiang L. ACS Nano, 2014, 8: 12292–12299CrossRefPubMedGoogle Scholar
  104. 104.
    Xie G, Xiao K, Zhang Z, Kong XY, Liu Q, Li P, Wen L, Jiang L. Angew Chem Int Ed, 2015, 54: 13664–13668CrossRefGoogle Scholar
  105. 105.
    Han C, Hou X, Zhang H, Guo W, Li H, Jiang L. J Am Chem Soc, 2011, 133: 7644–7647CrossRefPubMedGoogle Scholar
  106. 106.
    Xu Y, Sui X, Guan S, Zhai J, Gao L. Adv Mater, 2015, 27: 1851–1855CrossRefPubMedGoogle Scholar
  107. 107.
    Karhanek M, Kemp JT, Pourmand N, Davis RW, Webb CD. Nano Lett, 2005, 5: 403–407CrossRefPubMedGoogle Scholar
  108. 108.
    Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O. J Am Chem Soc, 2008, 130: 16351–16357CrossRefPubMedGoogle Scholar
  109. 109.
    Bulbul G, Chaves G, Olivier J, Ozel RE, Pourmand N. Cells, 2018, 7: 55CrossRefPubMedCentralGoogle Scholar
  110. 110.
    Özel RE, Lohith A, Mak WH, Pourmand N. RSC Adv, 2015, 5: 52436–52443CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Burns JR, Seifert A, Fertig N, Howorka S. Nat Nanotech, 2016, 11: 152–156CrossRefGoogle Scholar
  112. 112.
    Ying YL, Gao R, Hu YX, Long YT. Small Methods, 2018, 2: 1700390CrossRefGoogle Scholar
  113. 113.
    Yang L, Zhai Q, Li G, Jiang H, Han L, Wang J, Wang E. Chem Commun, 2013, 49: 11415–11417CrossRefGoogle Scholar
  114. 114.
    Laohakunakorn N, Thacker VV, Muthukumar M, Keyser UF. Nano Lett, 2015, 15: 695–702CrossRefPubMedGoogle Scholar
  115. 115.
    Macias-Romero C, Nahalka I, Okur HI, Roke S. Science, 2017, 357: 784–788CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations