Designing solid-state interfaces on lithium-metal anodes: a review

  • Chen-Zi Zhao
  • Hui Duan
  • Jia-Qi Huang
  • Juan Zhang
  • Qiang ZhangEmail author
  • Yu-Guo GuoEmail author
  • Li-Jun Wan
Invited Reviews


Li-metal anodes are one of the most promising energy storage systems that can considerably exceed the current technology to meet the ever-increasing demand of power applications. The apparent cycling performances and dendrite challenges of Li-metal anodes are highly influenced by the interface layer on the Li-metal anode because the intrinsic high reactivity of metallic Li results in an inevitable solid-state interface layer between the Li-metal and electrolytes. In this review, we summarize the recent progress on the interfacial chemistry regarding the interactions between electrolytes and ion migration through dynamic interfaces. The critical factors that affect the interface formation for constructing a stable interface with a low resistance are reviewed. Moreover, we review emerging strategies for rationally designing multiple-structured solid-state electrolytes and their interfaces, including the interfacial properties within hybrid electrolytes and the solid electrolyte/electrode interface. Finally, we present scientific issues and perspectives associated with Li-metal anode interfaces toward a practical Li-metal battery.


lithium-metal anode solid-state electrolyte energy chemistry rechargeable lithium-metal batteries solid electrolyte/electrode interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program (2016YFA0202500, 2016YFA0200102), the National Natural Science Foundation of China (21676160, 21825501, 21773264, 21805062, U1801257), Beijing Natural Science Foundation (L172023), and Tsinghua University Initiative Scientific Research Program.


  1. 1.
    Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403–10473CrossRefPubMedGoogle Scholar
  2. 2.
    Chen X, Hou T, Persson KA, Zhang Q. Mater Today, 2019, 22: 142–158CrossRefGoogle Scholar
  3. 3.
    Xin S, Chang Z, Zhang X, Guo YG. Nat Sci Rev, 2017, 4: 54–70Google Scholar
  4. 4.
    Chen S, Niu C, Lee H, Li Q, Yu L, Xu W, Zhang JG, Dufek EJ, Whittingham MS, Meng S, Xiao J, Liu J. Joule, 2019, 3: 1094–1105CrossRefGoogle Scholar
  5. 5.
    Zhang XQ, Zhao CZ, Huang JQ, Zhang Q. Engineering, 2018, 4: 831–847CrossRefGoogle Scholar
  6. 6.
    Sun YZ, Huang JQ, Zhao CZ, Zhang Q. Sci China Chem, 2017, 60: 1508–1526CrossRefGoogle Scholar
  7. 7.
    Li NW, Yin YX, Xin S, Li JY, Guo YG. Small Methods, 2017, 1: 1700094CrossRefGoogle Scholar
  8. 8.
    Ye H, Xin S, Yin YX, Guo YG. Adv Energy Mater, 2017, 7: 1700530CrossRefGoogle Scholar
  9. 9.
    Lu Y, Zhang Q, Chen J. Sci China Chem, 2019, 62: 533–548CrossRefGoogle Scholar
  10. 10.
    Duan H, Zhang J, Chen X, Zhang XD, Li JY, Huang LB, Zhang X, Shi JL, Yin YX, Zhang Q, Guo YG, Jiang L, Wan LJ. J Am Chem Soc, 2018, 140: 18051–18057CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Chem, 2019, 5: 74–96CrossRefGoogle Scholar
  12. 12.
    Li BQ, Chen XR, Chen X, Zhao CX, Zhang R, Cheng XB, Zhang Q. Research, 2019, 2019(2): 4608940Google Scholar
  13. 13.
    Guo YG, Chen J. Sci China Chem, 2017, 60: 1481–1482CrossRefGoogle Scholar
  14. 14.
    Xu X, Wang S, Wang H, Hu C, Jin Y, Liu J, Yan H. J Energy Chem, 2018, 27: 513–527CrossRefGoogle Scholar
  15. 15.
    Li L, Chen C, Yu A. Sci China Chem, 2017, 60: 1402–1412CrossRefGoogle Scholar
  16. 16.
    Li Y, Li Y, Pei A, Yan K, Sun Y, Wu CL, Joubert LM, Chin R, Koh AL, Yu Y, Perrino J, Butz B, Chu S, Cui Y. Science, 2017, 358: 506–510CrossRefPubMedGoogle Scholar
  17. 17.
    Bieker G, Winter M, Bieker P. Phys Chem Chem Phys, 2015, 17: 8670–8679CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng H, Zhu CB, Lu M, Yang Y. J Power Sources, 2007, 174: 1027–1031CrossRefGoogle Scholar
  19. 19.
    Sacci RL, Black JM, Balke N, Dudney NJ, More KL, Unocic RR. Nano Lett, 2015, 15: 2011–2018CrossRefPubMedGoogle Scholar
  20. 20.
    Kanamura K, Tamura H, Shiraishi S, Takehara Z-I. J Electrochem Soc, 1995, 142: 340–347CrossRefGoogle Scholar
  21. 21.
    Aurbach D, Weissman I, Zaban A, Chusid O. Electrochim Acta, 1994, 39: 51–71CrossRefGoogle Scholar
  22. 22.
    Aurbach D. J Power Sources, 2000, 89: 206–218CrossRefGoogle Scholar
  23. 23.
    Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. Adv Sci, 2016, 3: 1500213CrossRefGoogle Scholar
  24. 24.
    Peled E, Golodnitsky D, Ardel G. J Electrochem Soc, 1997, 144: L208–L210CrossRefGoogle Scholar
  25. 25.
    Malmgren S, Ciosek K, Hahlin M, Gustafsson T, Gorgoi M, Rensmo H, Edström K. Electrochim Acta, 2013, 97: 23–32CrossRefGoogle Scholar
  26. 26.
    Cheng XB, Yan C, Zhang XQ, Liu H, Zhang Q. ACS Energy Lett, 2018, 3: 1564–1570CrossRefGoogle Scholar
  27. 27.
    Maier J. Solid State Ion, 1995, 75: 139–145CrossRefGoogle Scholar
  28. 28.
    Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Chem Mater, 2016, 28: 2400–2407CrossRefGoogle Scholar
  29. 29.
    Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q. J Energy Chem, 2019, 37: 29–34CrossRefGoogle Scholar
  30. 30.
    Xue Y, Li Y, Zhang J, Liu Z, Zhao Y. Sci China Chem, 2018, 61: 765–786CrossRefGoogle Scholar
  31. 31.
    Yan C, Cheng XB, Yao YX, Shen X, Li BQ, Li WJ, Zhang R, Huang JQ, Li H, Zhang Q. Adv Mater, 2018, 30: 1804461CrossRefGoogle Scholar
  32. 32.
    Xu R, Sun Y, Wang Y, Huang J, Zhang Q. Chin Chem Lett, 2017, 28: 2235–2238CrossRefGoogle Scholar
  33. 33.
    Nolan AM, Zhu Y, He X, Bai Q, Mo Y. Joule, 2018, 2: 2016–2046CrossRefGoogle Scholar
  34. 34.
    Chen X, Shen X, Li B, Peng HJ, Cheng XB, Li BQ, Zhang XQ, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 734–737CrossRefGoogle Scholar
  35. 35.
    Chen X, Hou TZ, Li B, Yan C, Zhu L, Guan C, Cheng XB, Peng HJ, Huang JQ, Zhang Q. Energy Storage Mater, 2017, 8: 194–201CrossRefGoogle Scholar
  36. 36.
    Chen X, Li H-, Shen X, Zhang Q. Angew Chem, 2018, 130: 16885–16889CrossRefGoogle Scholar
  37. 37.
    Chen X, Zhang XQ, Li HR, Zhang Q. Batteries Supercaps, 2019, 2: 128–131CrossRefGoogle Scholar
  38. 38.
    Yan C, Yao YX, Chen X, Cheng XB, Zhang XQ, Huang JQ, Zhang Q. Angew Chem, 2018, 130: 14251–14255CrossRefGoogle Scholar
  39. 39.
    Cui J, Zhan TG, Zhang KD, Chen D. Chin Chem Lett, 2017, 28: 2171–2179CrossRefGoogle Scholar
  40. 40.
    Zhang XQ, Chen X, Xu R, Cheng XB, Peng HJ, Zhang R, Huang JQ, Zhang Q. Angew Chem Int Ed, 2017, 56: 14207–14211CrossRefGoogle Scholar
  41. 41.
    Cheng XB, Zhao MQ, Chen C, Pentecost A, Maleski K, Mathis T, Zhang XQ, Zhang Q, Jiang J, Gogotsi Y. Nat Commun, 2017, 8: 336CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Nat Mater, 2019, 18: 384–389CrossRefPubMedGoogle Scholar
  43. 43.
    Zhao Q, Tu Z, Wei S, Zhang K, Choudhury S, Liu X, Archer LA. Angew Chem Int Ed, 2018, 57: 992–996CrossRefGoogle Scholar
  44. 44.
    Xu R, Zhang XQ, Cheng XB, Peng HJ, Zhao CZ, Yan C, Huang JQ. Adv Funct Mater, 2018, 28: 1705838CrossRefGoogle Scholar
  45. 45.
    Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Nat Energy, 2019, 4: 365–373CrossRefGoogle Scholar
  46. 46.
    Yan C, Cheng XB, Tian Y, Chen X, Zhang XQ, Li WJ, Huang JQ, Zhang Q. Adv Mater, 2018, 30: 1707629CrossRefGoogle Scholar
  47. 47.
    Cheng XB, Yan C, Peng HJ, Huang JQ, Yang ST, Zhang Q. Energy Storage Mater, 2018, 10: 199–205CrossRefGoogle Scholar
  48. 48.
    Zhao CZ, Cheng XB, Zhang R, Peng HJ, Huang JQ, Ran R, Huang ZH, Wei F, Zhang Q. Energy Storage Mater, 2016, 3: 77–84CrossRefGoogle Scholar
  49. 49.
    Cheng XB, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q. Chem, 2017, 2: 258–270CrossRefGoogle Scholar
  50. 50.
    Zhang R, Chen X, Shen X, Zhang XQ, Chen XR, Cheng XB, Yan C, Zhao CZ, Zhang Q. Joule, 2018, 2: 764–777CrossRefGoogle Scholar
  51. 51.
    Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 5301–5305CrossRefGoogle Scholar
  52. 52.
    Zhang XQ, Chen X, Hou LP, Li BQ, Cheng XB, Huang JQ, Zhang Q. ACS Energy Lett, 2019, 4: 411–416CrossRefGoogle Scholar
  53. 53.
    Fan X, Ji X, Han F, Yue J, Chen J, Chen L, Deng T, Jiang J, Wang C. Sci Adv, 2018, 4: eaau9245CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang DY, Sinha NN, Burns JC, Aiken CP, Petibon R, Dahn JR. J Electrochem Soc, 2014, 161: A467–A472CrossRefGoogle Scholar
  55. 55.
    Nie M, Demeaux J, Young BT, Heskett DR, Chen Y, Bose A, Woicik JC, Lucht BL. J Electrochem Soc, 2015, 162: A7008–A7014CrossRefGoogle Scholar
  56. 56.
    Kohl M, Borrmann F, Althues H, Kaskel S. Adv Energy Mater, 2016, 6: 1502185CrossRefGoogle Scholar
  57. 57.
    Shkrob IA, Wishart JF, Abraham DP. J Phys Chem C, 2015, 119: 14954–14964CrossRefGoogle Scholar
  58. 58.
    Wang J, Luo C, Gao T, Langrock A, Mignerey AC, Wang C. Small, 2015, 11: 473–481CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang XQ, Cheng XB, Chen X, Yan C, Zhang Q. Adv Funct Mater, 2017, 27: 1605989CrossRefGoogle Scholar
  60. 60.
    Lu Y, Tu Z, Archer LA. Nat Mater, 2014, 13: 961–969CrossRefPubMedGoogle Scholar
  61. 61.
    von Wald Cresce A, Borodin O, Xu K. J Phys Chem C, 2012, 116: 26111–26117CrossRefGoogle Scholar
  62. 62.
    Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, Liu N, Adams BD, Ma C, Liu J, Zhang JG, Xu W. Nat Energy, 2018, 3: 739–746CrossRefGoogle Scholar
  63. 63.
    Ren X, Zou L, Jiao S, Mei D, Engelhard MH, Li Q, Lee H, Niu C, Adams BD, Wang C, Liu J, Zhang JG, Xu W. ACS Energy Lett, 2019, 4: 896–902CrossRefGoogle Scholar
  64. 64.
    Zhao Q, Chen P, Li S, Liu X, Archer LA. J Mater Chem A, 2019, 7: 7823–7830CrossRefGoogle Scholar
  65. 65.
    Li NW, Yin YX, Yang CP, Guo YG. Adv Mater, 2016, 28: 1853–1858CrossRefPubMedGoogle Scholar
  66. 66.
    Li NW, Shi Y, Yin YX, Zeng XX, Li JY, Li CJ, Wan LJ, Wen R, Guo YG. Angew Chem Int Ed, 2018, 57: 1505–1509CrossRefGoogle Scholar
  67. 67.
    Ye H, Yin YX, Zhang SF, Shi Y, Liu L, Zeng XX, Wen R, Guo YG, Wan LJ. Nano Energy, 2017, 36: 411–417CrossRefGoogle Scholar
  68. 68.
    Wei S, Cheng Z, Nath P, Tikekar MD, Li G, Archer LA. Sci Adv, 2018, 4: eaao6243CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Li NW, Yin YX, Li JY, Zhang CH, Guo YG. Adv Sci, 2017, 4: 1600400CrossRefGoogle Scholar
  70. 70.
    Zheng Q, Yi H, Li X, Zhang H. J Energy Chem, 2018, 27: 1597–1617CrossRefGoogle Scholar
  71. 71.
    Ji X, Zeng H, Gong X, Tsai F, Jiang T, Li RKY, Shi H, Luan S, Shi D. J Mater Chem A, 2017, 5: 24444–24452CrossRefGoogle Scholar
  72. 72.
    Wang Y, Zhang Y, Hou H. J Appl Electrochem, 2017, 47: 237–248CrossRefGoogle Scholar
  73. 73.
    Lyu YF, Zhang ZJ, Liu C, Geng Z, Gao LC, Chen Q. Chin J Polym Sci, 2018, 36: 78–84CrossRefGoogle Scholar
  74. 74.
    Yang C, Zhang L, Liu B, Xu S, Hamann T, McOwen D, Dai J, Luo W, Gong Y, Wachsman ED, Hu L. Proc Natl Acad Sci USA, 2018, 115: 3770–3775CrossRefPubMedGoogle Scholar
  75. 75.
    Zhou D, Liu R, Zhang J, Qi X, He YB, Li B, Yang QH, Hu YS, Kang F. Nano Energy, 2017, 33: 45–54CrossRefGoogle Scholar
  76. 76.
    Sugihara N, Nishimura K, Nishino H, Kanehashi S, Mayumi K, Tominaga Y, Shimomura T, Ito K. Electrochim Acta, 2017, 229: 166–172CrossRefGoogle Scholar
  77. 77.
    Paranjape N, Mandadapu PC, Wu G, Lin H. Polymer, 2017, 111: 1–8CrossRefGoogle Scholar
  78. 78.
    Zeng XX, Yin YX, Li NW, Du WC, Guo YG, Wan LJ. J Am Chem Soc, 2016, 138: 15825–15828CrossRefPubMedGoogle Scholar
  79. 79.
    Duan H, Yin YX, Zeng XX, Li JY, Shi JL, Shi Y, Wen R, Guo YG, Wan LJ. Energy Storage Mater, 2018, 10: 85–91CrossRefGoogle Scholar
  80. 80.
    Zhu Y, He X, Mo Y. ACS Appl Mater Interfaces, 2015, 7: 23685–23693CrossRefPubMedGoogle Scholar
  81. 81.
    Thangadurai V, Narayanan S, Pinzaru D. Chem Soc Rev, 2014, 43: 4714–4727CrossRefPubMedGoogle Scholar
  82. 82.
    Xin S, You Y, Wang S, Gao HC, Yin YX, Guo YG. ACS Energy Lett, 2017, 2: 1385–1394CrossRefGoogle Scholar
  83. 83.
    Canepa P, Dawson JA, Sai Gautam G, Statham JM, Parker SC, Islam MS. Chem Mater, 2018, 30: 3019–3027CrossRefGoogle Scholar
  84. 84.
    van den Broek J, Afyon S, Rupp JLM. Adv Energy Mater, 2016, 6: 1600736CrossRefGoogle Scholar
  85. 85.
    Fu KK, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L. Energy Environ Sci, 2017, 10: 1568–1575CrossRefGoogle Scholar
  86. 86.
    Zhang XD, Shi JL, Liang JY, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2017, 60: 1554–1560CrossRefGoogle Scholar
  87. 87.
    Liu B, Gong Y, Fu K, Han X, Yao Y, Pastel G, Yang C, Xie H, Wachsman ED, Hu L. ACS Appl Mater Interfaces, 2017, 9: 18809–18815CrossRefPubMedGoogle Scholar
  88. 88.
    Chinnam PR, Wunder SL. ACS Energy Lett, 2017, 2: 134–138CrossRefGoogle Scholar
  89. 89.
    Wang Q, Wen Z, Jin J, Guo J, Huang X, Yang J, Chen C. Chem Commun, 2016, 52: 1637–1640CrossRefGoogle Scholar
  90. 90.
    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough JB. J Am Chem Soc, 2016, 138: 9385–9388CrossRefPubMedGoogle Scholar
  91. 91.
    Zhao E, Yu X, Wang F, Li H. Sci China Chem, 2017, 60: 1483–1493CrossRefGoogle Scholar
  92. 92.
    Duan H, Yin YX, Shi Y, Wang PF, Zhang XD, Yang CP, Shi JL, Wen R, Guo YG, Wan LJ. J Am Chem Soc, 2018, 140: 82–85CrossRefPubMedGoogle Scholar
  93. 93.
    Duan H, Fan M, Chen WP, Li JY, Wang PF, Wang WP, Shi JL, Yin YX, Wan LJ, Guo YG. Adv Mater, 2018, 31: 1807789CrossRefGoogle Scholar
  94. 94.
    Zhou W, Wang Z, Pu Y, Li Y, Xin S, Li X, Chen J, Goodenough JB. Adv Mater, 2019, 31: 1805574CrossRefGoogle Scholar
  95. 95.
    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao YC, Wei F, Mai L. Joule, 2018, 2: 1991–2015CrossRefGoogle Scholar
  96. 96.
    Jin Y, Liu K, Lang J, Zhuo D, Huang Z, Wang C, Wu H, Cui Y. Nat Energy, 2018, 3: 732–738CrossRefGoogle Scholar
  97. 97.
    Zhu M, Wu J, Wang Y, Song M, Long L, Siyal SH, Yang X, Sui G. J Energy Chem, 2019, 37: 126–142CrossRefGoogle Scholar
  98. 98.
    Liu J, Zhang L, Li H, Zhao P, Ren P, Shi W, Cheng P. Sci China Chem, 2019, 62: 602–608CrossRefGoogle Scholar
  99. 99.
    Zhang J, Yuan T, Wan H, Qian J, Ai X, Yang H, Cao Y. Sci China Chem, 2017, 60: 1546–1553CrossRefGoogle Scholar
  100. 100.
    Liu FQ, Wang WP, Yin YX, Zhang SF, Shi JL, Wang L, Zhang XD, Zheng Y, Zhou JJ, Li L, Guo YG. Sci Adv, 2018, 4: eaat5383CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Liu Q, Geng Z, Han C, Fu Y, Li S, He Y, Kang F, Li B. J Power Sources, 2018, 389: 120–134CrossRefGoogle Scholar
  102. 102.
    Porz L, Swamy T, Sheldon BW, Rettenwander D, Frömling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM. Adv Energy Mater, 2017, 7: 1701003CrossRefGoogle Scholar
  103. 103.
    Chen B, Xu C, Wang H, Zhou J. Curr Appl Phys, 2019, 19: 149–154CrossRefGoogle Scholar
  104. 104.
    Monroe C, Newman J. J Electrochem Soc, 2004, 151: A880CrossRefGoogle Scholar
  105. 105.
    Monroe C, Newman J. J Electrochem Soc, 2005, 152: A396CrossRefGoogle Scholar
  106. 106.
    Zeng XX, Yin YX, Shi Y, Zhang XD, Yao HR, Wen R, Wu XW, Guo YG. Chem, 2018, 4: 298–307CrossRefGoogle Scholar
  107. 107.
    Choudhury S, Vu D, Warren A, Tikekar MD, Tu Z, Archer LA. Proc Natl Acad Sci USA, 2018, 115: 6620–6625CrossRefPubMedGoogle Scholar
  108. 108.
    Zhao CZ, Zhang XQ, Cheng XB, Zhang R, Xu R, Chen PY, Peng HJ, Huang JQ, Zhang Q. Proc Natl Acad Sci USA, 2017, 114: 11069–11074CrossRefPubMedGoogle Scholar
  109. 109.
    Zheng J, Hu YY. ACS Appl Mater Interfaces, 2018, 10: 4113–4120CrossRefPubMedGoogle Scholar
  110. 110.
    Zheng J, Tang M, Hu YY. Angew Chem Int Ed, 2016, 55: 12538–12542CrossRefGoogle Scholar
  111. 111.
    Yang T, Zheng J, Cheng Q, Hu YY, Chan CK. ACS Appl Mater Interfaces, 2017, 9: 21773–21780CrossRefPubMedGoogle Scholar
  112. 112.
    Zhang X, Liu T, Zhang S, Huang X, Xu B, Lin Y, Xu B, Li L, Nan CW, Shen Y. J Am Chem Soc, 2017, 139: 13779–13785CrossRefPubMedGoogle Scholar
  113. 113.
    Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan CW. Adv Mater, 2019, 31: 1806082CrossRefGoogle Scholar
  114. 114.
    Murugan R, Thangadurai V, Weppner W. Angew Chem Int Ed, 2007, 46: 7778–7781CrossRefGoogle Scholar
  115. 115.
    Li H. Joule, 2019, 3: 911–914CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical EngineeringTsinghua UniversityBeijingChina
  2. 2.CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  3. 3.Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations