Advertisement

Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission

  • Ya-Hang Wu
  • Kun Huang
  • Shu-Feng Chen
  • Yu-Zhe ChenEmail author
  • Chen-Ho Tung
  • Li-Zhu WuEmail author
Communications
  • 4 Downloads

Abstract

Stiff-stilbene derivatives have been widely explored as molecular rotors, molecular force probes and optical switches with excellent performance. However, their function as fluorophores is poorly understood. In the present work, we design three stiffstilbene derivatives and study their photophysical properties. These compounds exhibit very weak emission in solution but significantly enhanced monomer emission in viscous solvent, bright excimer emission in aggregates and at solid state. Detailed spectroscopic studies, single crystal structural analysis, powder X-ray diffraction (XRD) as well as effects of substituents have been carefully examined. They provide direct evidence that intermolecular interactions and molecular packing, which can restrict bond vibration and rotation, are responsible for the bright aggregation-induced emission.

Keywords

stiff-stilbene derivatives intermolecular interactions molecular packing aggregation-induced emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (2017YFA0206903), the National Natural Science Foundation of China (21871280, 21861132004), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17000000), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDY-SSW-JSC029), and K. C. Wong Education Foundation.

Supplementary material

11426_2019_9514_MOESM1_ESM.doc (6.9 mb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    Pollard MM, Meetsma A, Feringa BL. Org Biomol Chem, 2008, 6: 507–512CrossRefGoogle Scholar
  2. 2.
    Liu F, Morokuma K. J Am Chem Soc, 2012, 134: 4864–4876CrossRefGoogle Scholar
  3. 3.
    Yang QZ, Huang Z, Kucharski TJ, Khvostichenko D, Chen J, Boulatov R. Nat Nanotech, 2009, 4: 302–306CrossRefGoogle Scholar
  4. 4.
    Akbulatov S, Tian Y, Boulatov R. J Am Chem Soc, 2012, 134: 7620–7623CrossRefGoogle Scholar
  5. 5.
    Kucharski TJ, Huang Z, Yang QZ, Tian Y, Rubin NC, Concepcion CD, Boulatov R. Angew Chem Int Ed, 2009, 48: 7040–7043CrossRefGoogle Scholar
  6. 6.
    Huang Z, Boulatov R. Chem Soc Rev, 2011, 40: 2359–2384CrossRefGoogle Scholar
  7. 7.
    Wang Y, Xu JF, Chen YZ, Niu LY, Wu LZ, Tung CH, Yang QZ. Chem Commun, 2014, 50: 7001–7003CrossRefGoogle Scholar
  8. 8.
    Wang Y, Sun CL, Niu LY, Wu LZ, Tung CH, Chen YZ, Yang QZ. Polym Chem, 2017, 8: 3596–3602CrossRefGoogle Scholar
  9. 9.
    Xu JF, Chen YZ, Wu D, Wu LZ, Tung CH, Yang QZ. Angew Chem Int Ed, 2013, 52: 9738–9742CrossRefGoogle Scholar
  10. 10.
    Quick M, Berndt F, Dobryakov AL, Ioffe IN, Granovsky AA, Knie C, Mahrwald R, Lenoir D, Ernsting NP, Kovalenko SA. J Phys Chem B, 2014, 118: 1389–1402CrossRefGoogle Scholar
  11. 11.
    Qian H, Cousins ME, Horak EH, Wakefield A, Liptak MD, Aprahamian I. Nat Chem, 2017, 9: 83–87CrossRefGoogle Scholar
  12. 12.
    Saltiel J, D’Agostino JT. J Am Chem Soc, 1972, 94: 6445–6456CrossRefGoogle Scholar
  13. 13.
    Wang XF, Xiao HY, Chen PZ, Yang QZ, Chen B, Tung CH, Chen YZ, Wu LZ. J Am Chem Soc, 2019, 141: 5405–5050Google Scholar
  14. 14.
    Chen PZ, Weng YX, Niu LY, Chen YZ, Wu LZ, Tung CH, Yang QZ. Angew Chem Int Ed, 2016, 55: 2759–2763CrossRefGoogle Scholar
  15. 15.
    Huang YY, Gao JF, Peng HQ, Wu LZ, Tung CH, Chen YZ, Yang QZ. Acta Polym Sin, 2017, 1: 112–120Google Scholar
  16. 16.
    Shimizu M, Nakatani M, Nishimura K. Sci China Chem, 2018, 61: 925–931CrossRefGoogle Scholar
  17. 17.
    Baysec S, Minotto A, Klein P, Poddi S, Zampetti A, Allard S, Cacialli F, Scherf U. Sci China Chem, 2018, 61: 932–939CrossRefGoogle Scholar
  18. 18.
    Teng XY, Wu XC, Cao YQ, Jin YH, Li Y, Yan XL, Wang BW, Chen LG. Chin Chem Lett, 2017, 28: 1485–1491CrossRefGoogle Scholar
  19. 19.
    Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z. Angew Chem Int Ed, 2017, 56: 880–884CrossRefGoogle Scholar
  20. 20.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479CrossRefGoogle Scholar
  21. 21.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  22. 22.
    Pfeiffer M, Forrest SR, Leo K, Thompson ME. Adv Mater, 2002, 14: 1633–1636CrossRefGoogle Scholar
  23. 23.
    D’Andrade B. Nat Photon, 2007, 1: 33–34CrossRefGoogle Scholar
  24. 24.
    Kéna-cohen S, Forrest SR. Nat Photon, 2010, 4: 371–375CrossRefGoogle Scholar
  25. 25.
    Hu R, Leung NLC, Tang BZ. Chem Soc Rev, 2014, 43: 4494–4562CrossRefGoogle Scholar
  26. 26.
    Peng HQ, Zheng X, Han T, Kwok RTK, Lam JWY, Huang X, Tang BZ. J Am Chem Soc, 2017, 139: 10150–10156CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotChina

Personalised recommendations