Advertisement

Science China Chemistry

, Volume 62, Issue 7, pp 810–821 | Cite as

Stabilizing the black phase of cesium lead halide inorganic perovskite for efficient solar cells

  • Qiufeng Ye
  • Yang Zhao
  • Shaiqiang Mu
  • Pingqi Gao
  • Xingwang ZhangEmail author
  • Jingbi YouEmail author
Reviews
  • 82 Downloads

Abstract

Inorganic perovskite cesium lead halide is extensively studied because of its potential in improving the thermal stability of perovskite materials. However, the tolerance factor of this type of perovskite is near the critical value, which leads to phase instability. The optoelectronic active black phases (α, β, and γ phases of CsPbI3) are metastable at room temperature, which can be easily transferred into an optoelectronic inactive yellow phase (γ-CsPbI3). This review highlights recent progress in stabilizing the black phase for efficient and stable perovskite solar cells.

Keyword

inorganic perovskite black phase CsPbI3 stabilizing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0700700, 2017YFA0206600), Beijing Municipal Science & Technology Commission (Z181100004718005, Z181100005118002), the National Natural Science Foundation of China (61574133, 61634001), and the National 1000 Young Talents Awards.

References

  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2(a).
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  3. 2(b).
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Science, 2012, 338: 643–647CrossRefGoogle Scholar
  4. 2(c).
    Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345: 542–546CrossRefGoogle Scholar
  5. 2(d).
    Tan H, Jain A, Voznyy O, Lan X, Garcia de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726CrossRefGoogle Scholar
  6. 3.
    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2017, 2: 16177CrossRefGoogle Scholar
  7. 4.
    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photonics, 2019, 131: doi: 10.1038/s41566-019-0398-2Google Scholar
  8. 5(a).
    Zhu H, Miyata K, Fu Y, Wang J, Joshi PP, Niesner D, Williams KW, Jin S, Zhu XY. Science, 2016, 353: 1409–1413CrossRefGoogle Scholar
  9. 5(b).
    Miyata K, Meggiolaro D, Trinh MT, Joshi PP, Mosconi E, Jones SC, De Angelis F, Zhu XY. Sci Adv, 2017, 3: e1701217CrossRefGoogle Scholar
  10. 6(a).
    Wang D, Wright M, Elumalai NK, Uddin A. Sol Energy Mater Sol Cells, 2016, 147: 255–275CrossRefGoogle Scholar
  11. 6(b).
    Park NG, Gratzel M, Miyasaka T, Zhu K, Emery K. Nat Energy, 2016, 1, 16152CrossRefGoogle Scholar
  12. 6(c).
    Kim HS, Seo JY, Park NG. Chem Sus Chem, 2016, 9: 2528–2540CrossRefGoogle Scholar
  13. 6(d).
    Manser JS, Saidaminov MI, Christians JA, Bakr OM, Karnat PV. Ace Chem Res, 2016, 49: 330–338CrossRefGoogle Scholar
  14. 7(a).
    Kulbak M, Cahen D, Hodes G. J Phys Chem Lett, 2015, 6: 2452–2456CrossRefGoogle Scholar
  15. 7(b).
    Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J Phys Chem Lett, 2016, 7: 167–172CrossRefGoogle Scholar
  16. 8.
    Nenon DP, Christians JA, Wheeler LM, Blackburn JL, Sanehira EM, Dou B, Olsen ML, Zhu K, Berry JJ, Luther JM. Energy Environ Sci, 2016, 9: 2072–2082CrossRefGoogle Scholar
  17. 9.
    Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. J Phys Chem Lett, 2016, 7: 167–172CrossRefGoogle Scholar
  18. 10.
    Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ. Energy Environ Sci, 2014, 7: 982–988CrossRefGoogle Scholar
  19. 11.
    Meller CK. Nature, 1958, 182: 1436CrossRefGoogle Scholar
  20. 12.
    Eperon GE, Paternò GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ. J Mater Chem A, 2015, 3: 19688–19695CrossRefGoogle Scholar
  21. 13.
    Ripolles TS, Nishinaka K, Ogomi Y, Miyata Y, Hayase S. Sol Energy Mater Sol Cells, 2016, 144: 532–536CrossRefGoogle Scholar
  22. 14.
    Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nano Lett, 2015, 15: 3692–3696CrossRefGoogle Scholar
  23. 15.
    Song J, Li J, Li X, Xu L, Dong Y, Zeng H. Adv Mater, 2015, 27: 7162–7167CrossRefGoogle Scholar
  24. 16.
    Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM. Science, 2016, 354: 92–95CrossRefGoogle Scholar
  25. 17.
    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J. Nat Commun, 2018, 9: 2225CrossRefGoogle Scholar
  26. 18.
    Wang Y, Zhang T, Kan M, Zhao Y. J Am Chem Soc, 2018, 140: 12345–12348CrossRefGoogle Scholar
  27. 19.
    Sutton RJ, Filip MR, Haghighirad AA, Sakai N, Wenger B, Giustino F, Snaith HJ. ACS Energy Lett, 2018, 3: 1787–1794CrossRefGoogle Scholar
  28. 20.
    Marronnier A, Roma G, Boyer-Richard S, Pedesseau L, Jancu JM, Bonnassieux Y, Katan C, Stoumpos CC, Kanatzidis MG, Even J. ACS Nano, 2018, 12: 3477–3486CrossRefGoogle Scholar
  29. 21.
    Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J. Joule, 2017, 1: 371–382CrossRefGoogle Scholar
  30. 22.
    Wang K, Jin Z, Liang L, Bian H, Bai D, Wang H, Zhang J, Wang Q, Liu S. Nat Commun, 2018, 9: 4544CrossRefGoogle Scholar
  31. 23.
    Green MA, Ho-Baillie A. ACS Energy Lett, 2017, 2: 822–830CrossRefGoogle Scholar
  32. 24.
    Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z. Acta Crystlogr B Struct Sci, 2008, 64: 702–707CrossRefGoogle Scholar
  33. 25.
    Nam JK, Chai SU, Cha W, Choi YJ, Kim W, Jung MS, Kwon J, Kim D, Park JH. Nano Lett, 2017, 17: 2028–2033CrossRefGoogle Scholar
  34. 26.
    Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF. ACS Energy Lett, 2018, 3: 970–978CrossRefGoogle Scholar
  35. 27.
    Lau CFJ, Deng X, Zheng J, Kim J, Zhang Z, Zhang M, Bing J, Wilkinson B, Hu L, Patterson R, Huang S, Ho-Baillie A. J Mater Chem A, 2018, 6: 5580–5586CrossRefGoogle Scholar
  36. 28.
    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z. J Am Chem Soc, 2017, 139: 14009–14012CrossRefGoogle Scholar
  37. 29.
    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S. ACS Energy Lett, 2017, 2: 2219–2227CrossRefGoogle Scholar
  38. 30.
    Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho-Baillie A. ACS Energy Lett, 2017, 2: 2319–2325CrossRefGoogle Scholar
  39. 31.
    Yang F, Hirotani D, Kapil G, Kamarudin MA, Ng CH, Zhang Y, Shen Q, Hayase S. Angew Chem Int Ed, 2018, 57: 12745–12749CrossRefGoogle Scholar
  40. 32.
    Xiang W, Wang Z, Kubicki DJ, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Gratzel M, Hagfeldt A. Joule, 2019, 3: 205–214CrossRefGoogle Scholar
  41. 33.
    Liu C, Li W, Li H, Wang H, Zhang C, Yang Y, Schropp RE, Gao X, Xue Q, Mai Y. Adv Energy Mater, 2018: 1803572Google Scholar
  42. 34.
    Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ. Adv Energy Mater, 2016, 6: 1502458CrossRefGoogle Scholar
  43. 35.
    Dong C, Han X, Zhao Y, Li J, Chang L, Zhao W. Sol RRL, 2018, 2: 1800139CrossRefGoogle Scholar
  44. 36.
    Beal RE, Slotcavage DJ, Leijtens T, Bowring AR, Belisle RA, Nguyen WH, Burkhard GF, Hoke ET, McGehee MD. J Phys Chem Lett, 2016, 7: 746–751CrossRefGoogle Scholar
  45. 37.
    Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW. Adv Mater, 2017, 29: 1605290CrossRefGoogle Scholar
  46. 38.
    Frolova LA, Anokhin DV, Piryazev AA, Luchkin SY, Dremova NN, Stevenson KJ, Troshin PA. J Phys Chem Lett, 2017, 8: 67–72CrossRefGoogle Scholar
  47. 39.
    Yonezawa K, Yamamoto K, Shahiduzzaman M, Furumoto Y, Hamada K, Ripolles, TS, Taima T, Jap J. Applied Phys, 2017, 56: 04C11Google Scholar
  48. 40.
    Hutter EM, Sutton RJ, Chandrashekar S, Abdi-Jalebi M, Stranks SD, Snaith HJ, Savenije TJ. ACS Energy Lett, 2017, 2: 1901–1908CrossRefGoogle Scholar
  49. 41.
    Shahiduzzaman M, Yonezawa K, Yamamoto K, Ripolles TS, Kar-akawa M, Kuwabara T, Takahashi K, Hayase S, Taima T. ACS Omega, 2017, 2: 4464–4469CrossRefGoogle Scholar
  50. 42.
    Ma Q, Huang S, Chen S, Zhang M, Lau C, Deng X, Zheng J, Ho-Baillie A. J Phys Chem C, 2017, 121: 19642–19649CrossRefGoogle Scholar
  51. 43.
    Ma Q, Huang S, Wen X, Green MA, Ho-Baillie AWY. Adv Energy Mater, 2016, 6: 1502202CrossRefGoogle Scholar
  52. 44.
    Lau CFJ, Deng X, Ma Q, Zheng J, Yun JS, Green MA, Huang S, Ho-Baillie AWY. ACS Energy Lett, 2016, 1: 573–577CrossRefGoogle Scholar
  53. 45.
    Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B. AdvMater, 2018, 30: 1705393Google Scholar
  54. 46.
    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825–3828CrossRefGoogle Scholar
  55. 47.
    Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, (Frank) Liu S. Nano Energy, 2018, 52: 408–415CrossRefGoogle Scholar
  56. 48.
    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191–204CrossRefGoogle Scholar
  57. 49.
    Li X, Ibrahim Dar M, Yi C, Luo J, Tschumi M, Zakeeruddin SM, Nazeeruddin MK, Han H, Gratzel M. Nat Chem, 2015, 7: 703–711CrossRefGoogle Scholar
  58. 50.
    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L. Nat Commun, 2018, 9: 1076CrossRefGoogle Scholar
  59. 51.
    Fu Y, Rea MT, Chen J, Morrow DJ, Hautzinger MP, Zhao Y, Pan D, Manger LH, Wright JC, Goldsmith RH, Jin S. Chem Mater, 2017, 29: 8385–8394CrossRefGoogle Scholar
  60. 52.
    Xiang S, Fu Z, Li W, Wei Y, Liu J, Liu H, Zhu L, Zhang R, Chen H. ACS Energy Lett, 2018, 3: 1824–1831CrossRefGoogle Scholar
  61. 53.
    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y. J Phys Chem Lett, 2016, 7: 3603–3608CrossRefGoogle Scholar
  62. 54.
    Ding X, Chen H, Wu Y, Ma S, Dai S, Yang S, Zhu J. J Mater Chem A, 2018, 6: 18258–18266CrossRefGoogle Scholar
  63. 55.
    Zhang T, Dar MI, Li G, Xu F, Guo N, Gratzel M, Zhao Y. Sci Adv, 2017, 3: el700841Google Scholar
  64. 56.
    Li F, Pei Y, Xiao F, Zeng T, Yang Z, Xu J, Sun J, Peng B, Liu M. Nanoscale, 2018, 10: 6318–6322CrossRefGoogle Scholar
  65. 57.
    Xiang S, Li W, Wei Y, Liu J, Liu H, Zhu L, Chen H. Nanoscale, 2018, 10: 9996–10004CrossRefGoogle Scholar
  66. 58.
    Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y. Joule, 2018, 2: 1–11CrossRefGoogle Scholar
  67. 59.
    Zhao B, Jin SF, Huang S, Liu N, Ma JY, Xue DJ, Han Q, Ding J, Ge QQ, Feng Y, Hu JS. J Am Chem Soc, 2018, 140: 11716–11725CrossRefGoogle Scholar
  68. 60.
    Ke W, Spanopoulos I, Stoumpos CC, Kanatzidis MG. Nat Commun, 2018, 9: 4785CrossRefGoogle Scholar
  69. 61.
    Lu J, Chen SC, Zheng Q. ACS Appl Energy Mater, 2018, 1: 5872–5878CrossRefGoogle Scholar
  70. 62.
    Jena AK, Kulkarni A, Sanehira Y, Ikegami M, Miyasaka T. Chem Mater, 2018, 30: 6668–6674CrossRefGoogle Scholar
  71. 63.
    Eperon GE, Paterno GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ. J Mater Chem A, 2015, 3: 19688–19695CrossRefGoogle Scholar
  72. 64.
    Sanchez S, Christoph N, Grobety B, Phung N, Steiner U, Saliba M, Abate A. Adv Energy Mater, 2018, 8: 1802060CrossRefGoogle Scholar
  73. 65.
    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J. Joule, 2018, 2: 1356–1368CrossRefGoogle Scholar
  74. 66.
    Haque F, Wright M, Mahmud MA, Yi H, Wang D, Duan L, Xu C, Upama MB, Uddin A. ACS Omega, 2018, 3: 11937–11944CrossRefGoogle Scholar
  75. 67.
    Li N, Zhu Z, Li J, Jen AKY, Wang L. Adv Energy Mater, 2018, 5: 1801117Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Semiconductor Materials Science, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of MaterialsSun Yat-sen UniversityGuangzhouChina

Personalised recommendations