Advertisement

Identify crystal structures by a new paradigm based on graph theory for building materials big data

  • Mouyi Weng
  • Zhi Wang
  • Guoyu Qian
  • Yaokun Ye
  • Zhefeng Chen
  • Xin Chen
  • Shisheng Zheng
  • Feng PanEmail author
Communications

Abstract

Material identification technique is crucial to the development of structure chemistry and materials genome project. Current methods are promising candidates to identify structures effectively, but have limited ability to deal with all structures accurately and automatically in the big materials database because different material resources and various measurement errors lead to variation of bond length and bond angle. To address this issue, we propose a new paradigm based on graph theory (GTscheme) to improve the efficiency and accuracy of material identification, which focuses on processing the “topological relationship” rather than the value of bond length and bond angle among different structures. By using this method, automatic deduplication for big materials database is achieved for the first time, which identifies 626,772 unique structures from 865,458 original structures. Moreover, the graph theory scheme has been modified to solve some advanced problems such as identifying highly distorted structures, distinguishing structures with strong similarity and classifying complex crystal structures in materials big data.

Keyword

structures identification graph theory big data topological relationship materials database 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Dr. Lin-Wang Wang from Lawrence Berkeley National Laboratory and Dr. Wenfei Fan from the University of Edinburgh for their helpful discussions. This work was supported by the National Key R&D Program of China (2016YFB0700600), the National Natural Science Foundation of China (21603007, 51672012), Soft Science Research Project of Guangdong Province (2017B030301013), and New Energy Materials Genome Preparation & Test Key-Laboratory Project of Shenzhen (ZDSYS201707281026184).

Supplementary material

11426_2019_9502_MOESM1_ESM.pdf (514 kb)
Identify crystal structures by a new paradigm based on graph theory for building materials big data

References

  1. 1.
    Hautier G, Fischer CC, Jain A, Mueller T, Ceder G. Chem Mater, 2010, 22: 3762–3767CrossRefGoogle Scholar
  2. 2.
    Hautier G, Fischer C, Ehrlacher V, Jain A, Ceder G. Inorg Chem, 2011, 50: 656–663CrossRefGoogle Scholar
  3. 3.
    Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G. Chem Mater, 2011, 23: 3495–3508CrossRefGoogle Scholar
  4. 4.
    Jain A, Hautier G, Moore CJ, Ping Ong S, Fischer CC, Mueller T, Persson KA, Ceder G. Comput Mater Sci, 2011, 50: 2295–2310CrossRefGoogle Scholar
  5. 5.
    Mueller T, Hautier G, Jain A, Ceder G. Chem Mater, 2011, 23: 3854–3862CrossRefGoogle Scholar
  6. 6.
    Wu Y, Lazic P, Hautier G, Persson K, Ceder G. Energy Environ Sci, 2013, 6: 157–168CrossRefGoogle Scholar
  7. 7.
    Yang L, Ceder G. Phys Rev B, 2013, 88: 224107CrossRefGoogle Scholar
  8. 8.
    Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ. Nature, 2016, 533: 73–76CrossRefGoogle Scholar
  9. 9.
    Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson KA. APL Mater, 2013, 1: 011002CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. JOM, 2013, 65: 1501–1509CrossRefGoogle Scholar
  12. 12.
    Downs RT, Hall-Wallace M. Am Mineral, 2003, 88: 247–250CrossRefGoogle Scholar
  13. 13.
    Kirklin S, Saal JE, Meredig B, Thompson A, Doak JW, Aykol M, Rühl S, Wolverton C. npj Comput Mater, 2015, 1: 15010CrossRefGoogle Scholar
  14. 14.
    Wang Y, Lv J, Zhu L, Ma Y. Phys Rev B, 2010, 82: 094116CrossRefGoogle Scholar
  15. 15.
    Lonie DC, Zurek E. Comput Phys Commun, 2012, 183: 690–697CrossRefGoogle Scholar
  16. 16.
    Sadeghi A, Ghasemi SA, Schaefer B, Mohr S, Lill MA, Goedecker S. J Chem Phys, 2013, 139: 184118CrossRefGoogle Scholar
  17. 17.
    Zhu L, Amsler M, Fuhrer T, Schaefer B, Faraji S, Rostami S, Ghasemi SA, Sadeghi A, Grauzinyte M, Wolverton C, Goedecker S. J Chem Phys, 2016, 144: 034203CrossRefGoogle Scholar
  18. 18.
    Liu X, Prewitt C. Phys Chem Miner, 1990, 17: 168–172CrossRefGoogle Scholar
  19. 19.
    Han MH, Gonzalo E, Singh G, Rojo T. Energy Environ Sci, 2015, 8: 81–102CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mouyi Weng
    • 1
  • Zhi Wang
    • 1
  • Guoyu Qian
    • 1
  • Yaokun Ye
    • 1
  • Zhefeng Chen
    • 1
  • Xin Chen
    • 1
  • Shisheng Zheng
    • 1
  • Feng Pan
    • 1
    Email author
  1. 1.School of Advanced MaterialsPeking University, Shenzhen Graduate SchoolShenzhenChina

Personalised recommendations