Advertisement

Polycyclic aromatic hydrocarbons in the graphene era

  • Xiao-Ye WangEmail author
  • Xuelin Yao
  • Klaus MüllenEmail author
Open Access
Invited Reviews
  • 199 Downloads

Abstract

Polycyclic aromatic hydrocarbons (PAHs) have been the subject of interdisciplinary research in the fields of chemistry, physics, materials science, and biology. Notably, PAHs have drawn increasing attention since the discovery of graphene, which has been regarded as the “wonder” material in the 21st century. Different from semimetallic graphene, nanoscale graphenes, such as graphene nanoribbons and graphene quantum dots, exhibit finite band gaps owing to the quantum confinement, making them attractive semiconductors for next-generation electronic applications. Researches based on PAHs and graphenes have expanded rapidly over the past decade, thereby posing a challenge in conducting a comprehensive review. This study aims to interconnect the fields of PAHs and graphenes, which have mainly been discussed separately. In particular, by selecting representative examples, we explain how these two domains can stimulate each other. We hope that this integrated approach can offer new opportunities and further promote synergistic developments in these fields.

Keywords

polycyclic aromatic hydrocarbon graphene graphene nanoribbon nanographene graphene quantum dot carbon materials 

Notes

Acknowledgements

The authors thank all of their distinguished collaborators and research associates who enabled the achievements partly described in this article. This article is a tribute to scientific interaction and its benefit. This work was supported by the European Union Projects GENIUS (ITN-264694), UPGRADE, MoQuaS, and Graphene Flagship (CNECT-ICT-604391), European Research Council (ERC)-Adv.-Grant 267160 (NANOGRAPH), the Office of Naval Research Basic Research Challenge (BRC) Program (molecular synthesis and characterization), the Max Planck Society, the German Chemical Industry Association, the Alexander von Humboldt Foundation. BASF SE and Samsung are gratefully acknowledged. X.Y. is thankful for a fellowship from the China Scholarship Council.

Open access funding provided by Max Planck Society.

References

  1. 1.
    Hirsch A. Nat Mater, 2010, 9: 868–871Google Scholar
  2. 2.
    Georgakilas V, Perman JA, Tucek J, Zboril R. Chem Rev, 2015, 115: 4744–4822Google Scholar
  3. 3.
    Geim AK, Novoselov KS. Nat Mater, 2007, 6: 183–191Google Scholar
  4. 4.
    Geim AK. Science, 2009, 324: 1530–1534Google Scholar
  5. 5.
    Novoselov KS, Fal’Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K. Nature, 2012, 490: 192–200Google Scholar
  6. 6.
    Wang XY, Narita A, Müllen K. Nat Rev Chem, 2017, 2: 0100Google Scholar
  7. 7.
    Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hee Hong B, Ahn JH, Min Kim J, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Di Matteo A, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J. Nanoscale, 2015, 7: 4598–4810Google Scholar
  8. 8.
    Avouris P, Dimitrakopoulos C. Mater Today, 2012, 15: 86–97Google Scholar
  9. 9.
    Allen MJ, Tung VC, Kaner RB. Chem Rev, 2010, 110: 132–145Google Scholar
  10. 10.
    Chen L, Hernandez Y, Feng X, Müllen K. Angew Chem Int Ed, 2012, 51: 7640–7654Google Scholar
  11. 11.
    Peierls RE. Ann Inst Henri Poincare, 1935, 5: 177–222Google Scholar
  12. 12.
    Landau LD. Phys Z Sowjetunion, 1937, 11: 26–35Google Scholar
  13. 13.
    Mermin ND. Phys Rev, 1968, 176: 250–254Google Scholar
  14. 14.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669Google Scholar
  15. 15.
    Schwierz F. Nat Nanotech, 2010, 5: 487–496Google Scholar
  16. 16.
    Narita A, Chen Z, Chen Q, Müllen K. Chem Sci, 2019, 10: 964–975Google Scholar
  17. 17.
    Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319: 1229–1232Google Scholar
  18. 18.
    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Phys Rev Lett, 2008, 100: 206803Google Scholar
  19. 19.
    Jiao L, Wang X, Diankov G, Wang H, Dai H. Nat Nanotech, 2010, 5: 321–325Google Scholar
  20. 20.
    Tour JM. Chem Mater, 2014, 26: 163–171Google Scholar
  21. 21.
    Han MY, Ozyilmaz B, Zhang Y, Kim P. Phys Rev Lett, 2007, 98: 206805Google Scholar
  22. 22.
    Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2006, 97: 216803Google Scholar
  23. 23.
    Han W, Kawakami RK, Gmitra M, Fabian J. Nat Nanotech, 2014, 9: 794–807Google Scholar
  24. 24.
    Cao T, Zhao F, Louie SG. Phys Rev Lett, 2017, 119: 076401Google Scholar
  25. 25.
    Shen J, Zhu Y, Yang X, Li C. Chem Commun, 2012, 48: 3686Google Scholar
  26. 26.
    Zhang Z, Zhang J, Chen N, Qu L. Energy Environ Sci, 2012, 5: 8869Google Scholar
  27. 27.
    Yan X, Li B, Li L. Acc Chem Res, 2013, 46: 2254–2262Google Scholar
  28. 28.
    Müllen K, Wegner G. Electronic Materials: the Oligomer Approach. Weinheim: John Wiley & Sons, 2008Google Scholar
  29. 29.
    Watson MD, Fechtenkötter A, Müllen K. Chem Rev, 2001, 101: 1267–1300Google Scholar
  30. 30.
    Wang C, Dong H, Hu W, Liu Y, Zhu D. Chem Rev, 2012, 112: 2208–2267Google Scholar
  31. 31.
    Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633–12665Google Scholar
  32. 32.
    Murphy AR, Fréchet JMJ. Chem Rev, 2007, 107: 1066–1096Google Scholar
  33. 33.
    Clar E, Schoental R. Polycyclic Hydrocarbons. Vol. 2. Berlin, Heidelberg: Springer, 1964Google Scholar
  34. 34.
    Armit JW, Robinson R. J Chem Soc Trans, 1925, 127: 1604–1618Google Scholar
  35. 35.
    Payamyar P, King BT, Öttinger HC, Schlüter AD. Chem Commun, 2016, 52: 18–34Google Scholar
  36. 36.
    Zdetsis AD. J Phys Chem C, 2018, 122: 17526–17536Google Scholar
  37. 37.
    Gutzler R, Perepichka DF. J Am Chem Soc, 2013, 135: 16585–16594Google Scholar
  38. 38.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Science, 2009, 324: 1312–1314Google Scholar
  39. 39.
    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song YI, Kim YJ, Kim KS, Özyilmaz B, Ahn JH, Hong BH, Iijima S. Nat Nanotech, 2010, 5: 574–578Google Scholar
  40. 40.
    Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P. Science, 2010, 327: 662Google Scholar
  41. 41.
    Tzalenchuk A, Lara-Avila S, Kalaboukhov A, Paolillo S, Syväjärvi M, Yakimova R, Kazakova O, Janssen TJBM, Fal’ko V, Kubatkin S. Nat Nanotech, 2010, 5: 186–189Google Scholar
  42. 42.
    Wan X, Chen K, Liu D, Chen J, Miao Q, Xu J. Chem Mater, 2012, 24: 3906–3915Google Scholar
  43. 43.
    Tan YZ, Yang B, Parvez K, Narita A, Osella S, Beljonne D, Feng X, Müllen K. Nat Commun, 2013, 4: 2646Google Scholar
  44. 44.
    Stein SE, Brown RL. Am Chem Soc, 1987, 109: 3721–3729Google Scholar
  45. 45.
    Salem L. Am Chem Soc, 1968, 90: 543–552Google Scholar
  46. 46.
    Dewar MJS. The Molecular Orbital Theory of Organic Chemistry. New York: McGraw-Hill, 1969Google Scholar
  47. 47.
    Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem Rev, 2016, 116: 962–1052Google Scholar
  48. 48.
    Chen L, Li C, Müllen K. J Mater Chem C, 2014, 2: 1938–1956Google Scholar
  49. 49.
    Fabian J, Nakazumi H, Matsuoka M. Chem Rev, 1992, 92: 1197–1226Google Scholar
  50. 50.
    Allamandola LJ, Tielens AGGM, Barker JR. Astrophys J Suppl Ser, 1989, 71: 733–775Google Scholar
  51. 51.
    Tielens AGGM. Annu Rev Astron Astrophys, 2008, 46: 289–337Google Scholar
  52. 52.
    Anthony JE. Chem Rev, 2006, 106: 5028–5048Google Scholar
  53. 53.
    Abdel-Shafy HI, Mansour MSM. Egyptian J Pet, 2016, 25: 107–123Google Scholar
  54. 54.
    Gingras M. Chem Soc Rev, 2013, 42: 968–1006Google Scholar
  55. 55.
    Gingras M, Félix G, Peresutti R. Chem Soc Rev, 2013, 42: 1007–1050Google Scholar
  56. 56.
    Gingras M. Chem Soc Rev, 2013, 42: 1051–1095Google Scholar
  57. 57.
    Shen Y, Chen CF. Chem Rev, 2012, 112: 1463–1535Google Scholar
  58. 58.
    Song H, Reed MA, Lee T. Adv Mater, 2011, 23: 1583–1608Google Scholar
  59. 59.
    Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318–4440Google Scholar
  60. 60.
    Stabel A, Herwig P, Müllen K, Rabe JP. Angew Chem Int Ed, 1995, 34: 1609–1611Google Scholar
  61. 61.
    Dong L, Wang S, Wang W, Chen C, Lin T, Adisoejoso J, Lin N. Transition metals trigger on-surface ullmann coupling reaction: intermediate, catalyst and template. In: Gourdon A, Ed. On-Surface Synthesis. Advances in Atom and Single Molecule Machines. Cham: Springer International Publishing, 2016. 23–42Google Scholar
  62. 62.
    Sun Q, Zhang R, Qiu J, Liu R, Xu W. Adv Mater, 2018, 30: 1705630Google Scholar
  63. 63.
    Talirz L, Ruffieux P, Fasel R. Adv Mater, 2016, 28: 6222–6231Google Scholar
  64. 64.
    Figueira-Duarte TM, Müllen K. Chem Rev, 2011, 111: 7260–7314Google Scholar
  65. 65.
    Sun M, Müllen K, Yin M. Chem Soc Rev, 2016, 45: 1513–1528Google Scholar
  66. 66.
    Segawa Y, Ito H, Itami K. Nat Rev Mater, 2016, 1: 15002Google Scholar
  67. 67.
    Narita A, Wang XY, Feng X, Müllen K. Chem Soc Rev, 2015, 44: 6616–6643Google Scholar
  68. 68.
    Majewski MA, Stępień M. Angew Chem Int Ed, 2019, 58: 86–116Google Scholar
  69. 69.
    Ito H, Ozaki K, Itami K. Angew Chem Int Ed, 2017, 56: 11144–11164Google Scholar
  70. 70.
    Ito H, Segawa Y, Murakami K, Itami K. J Am Chem Soc, 2019, 141: 3–10Google Scholar
  71. 71.
    Stępień M, Gońka E, Żyla M, Sprutta N. Chem Rev, 2017, 117: 3479–3716Google Scholar
  72. 72.
    Mas-Torrent M, Rovira C. Chem Rev, 2011, 111: 4833–4856Google Scholar
  73. 73.
    Mei J, Diao Y, Appleton AL, Fang L, Bao Z. J Am Chem Soc, 2013, 135: 6724–6746Google Scholar
  74. 74.
    Wu J, Pisula W, Müllen K. Chem Rev, 2007, 107: 718–747Google Scholar
  75. 75.
    Lei T, Wang JY, Pei J. Chem Mater, 2014, 26: 594–603Google Scholar
  76. 76.
    Sergeyev S, Pisula W, Geerts YH. Chem Soc Rev, 2007, 36: 1902Google Scholar
  77. 77.
    Günes S, Neugebauer H, Sariciftci NS. Chem Rev, 2007, 107: 1324–1338Google Scholar
  78. 78.
    Roy-Mayhew JD, Aksay IA. Chem Rev, 2014, 114: 6323–6348Google Scholar
  79. 79.
    Feng X, Pisula W, Müllen K. Pure Appl Chem, 2009, 81: 2203–2224Google Scholar
  80. 80.
    Rieger R, Müllen K. J Phys Org Chem, 2010, 23: 315–325Google Scholar
  81. 81.
    Sun Z, Ye Q, Chi C, Wu J. Chem Soc Rev, 2012, 41: 7857Google Scholar
  82. 82.
    Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew Chem Int Ed, 2013, 52: 9900–9930Google Scholar
  83. 83.
    Simpson CD, Brand JD, Berresheim AJ, Przybilla L, Räder HJ, Müllen K. Chem Eur J, 2002, 8: 1424–1429Google Scholar
  84. 84.
    Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat Chem, 2013, 5: 739–744Google Scholar
  85. 85.
    Ormsby JL, Black TD, Hilton CL, Bharat CL, King BT. Tetrahedron, 2008, 64: 11370–11378Google Scholar
  86. 86.
    Pradhan A, Dechambenoit P, Bock H, Durola F. J Org Chem, 2013, 78: 2266–2274Google Scholar
  87. 87.
    Dou X, Yang X, Bodwell GJ, Wagner M, Enkelmann V, Müllen K. Org Lett, 2007, 9: 2485–2488Google Scholar
  88. 88.
    Wentrup C. Angew Chem Int Ed, 2017, 56: 14808–14835Google Scholar
  89. 89.
    Tsefrikas VM, Scott LT. Chem Rev, 2006, 106: 4868–4884Google Scholar
  90. 90.
    Scott LT, Boorum MM, McMahon BJ, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science, 2002, 295: 1500–1503Google Scholar
  91. 91.
    Scott LT, Jackson EA, Zhang Q, Steinberg BD, Bancu M, Li B. J Am Chem Soc, 2012, 134: 107–110Google Scholar
  92. 92.
    Mallory FB, Mallory CW. Org React, 2004, 30: 1Google Scholar
  93. 93.
    Laarhoven WH. Recl Trav Chim Pays-Bas, 1983, 102: 185–204Google Scholar
  94. 94.
    Meier H. Angew Chem Int Ed Engl, 1992, 31: 1399–1420Google Scholar
  95. 95.
    Xiao S, Myers M, Miao Q, Sanaur S, Pang K, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2005, 44: 7390–7394Google Scholar
  96. 96.
    Dössel L, Gherghel L, Feng X, Müllen K. Angew Chem Int Ed, 2011, 50: 2540–2543Google Scholar
  97. 97.
    Daigle M, Picard-Lafond A, Soligo E, Morin JF. Angew Chem Int Ed, 2016, 55: 2042–2047Google Scholar
  98. 98.
    Jackson EA, Steinberg BD, Bancu M, Wakamiya A, Scott LT. J Am Chem Soc, 2007, 129: 484–485Google Scholar
  99. 99.
    Amsharov KY, Kabdulov MA, Jansen M. Angew Chem Int Ed, 2012, 51: 4594–4597Google Scholar
  100. 100.
    Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. Science, 2009, 325: 1110–1114Google Scholar
  101. 101.
    Treier M, Pignedoli CA, Laino T, Rieger R, Müllen K, Passerone D, Fasel R. Nat Chem, 2010, 3: 61–67Google Scholar
  102. 102.
    Fort EH, Donovan PM, Scott LT. J Am Chem Soc, 2009, 131: 16006–16007Google Scholar
  103. 103.
    Clar E, Zander M. J Chem Soc, 1957, 4616Google Scholar
  104. 104.
    Fort EH, Scott LT. Angew Chem Int Ed, 2010, 49: 6626–6628Google Scholar
  105. 105.
    Some S, Dutta B, Ray JK. Tetrahedron Lett, 2006, 47: 1221–1224Google Scholar
  106. 106.
    Iuliano A, Piccioli P, Fabbri D. Org Lett, 2004, 6: 3711–3714Google Scholar
  107. 107.
    Bonifacio MC, Robertson CR, Jung JY, King BT. J Org Chem, 2005, 70: 8522–8526Google Scholar
  108. 108.
    Xia Y, Liu Z, Xiao Q, Qu P, Ge R, Zhang Y, Wang J. Angew Chem Int Ed, 2012, 51: 5714–5717Google Scholar
  109. 109.
    Senese DA, Chalifoux AW. Molecules, 2018, 24Google Scholar
  110. 110.
    Yao T, Campo MA, Larock RC. Org Lett, 2004, 6: 2677–2680Google Scholar
  111. 111.
    Goldfinger MB, Crawford KB, Swager TM. J Am Chem Soc, 1997, 119: 4578–4593Google Scholar
  112. 112.
    Jin T, Zhao J, Asao N, Yamamoto Y. Chem Eur J, 2014, 20: 3554–3576Google Scholar
  113. 113.
    Donovan PM, Scott LT. J Am Chem Soc, 2004, 126: 3108–3112Google Scholar
  114. 114.
    Shen HC, Tang JM, Chang HK, Yang CW, Liu RS. J Org Chem, 2005, 70: 10113–10116Google Scholar
  115. 115.
    Schuler B, Collazos S, Gross L, Meyer G, Pérez D, Guitián E, Peña D. Angew Chem Int Ed, 2014, 53: 9004–9006Google Scholar
  116. 116.
    Rüdiger EC, Porz M, Schaffroth M, Rominger F, Bunz UHF. Chem Eur J, 2014, 20: 12725–12728Google Scholar
  117. 117.
    Nagao I, Shimizu M, Hiyama T. Angew Chem Int Ed, 2009, 48: 7573–7576Google Scholar
  118. 118.
    Yue W, Gao J, Li Y, Jiang W, Di Motta S, Negri F, Wang Z. J Am Chem Soc, 2011, 133: 18054–18057Google Scholar
  119. 119.
    Dang H, Garcia-Garibay MA. J Am Chem Soc, 2001, 123: 355–356Google Scholar
  120. 120.
    Dang H, Levitus M, Garcia-Garibay MA. J Am Chem Soc, 2002, 124: 136–143Google Scholar
  121. 121.
    Lütke Eversloh C, Avlasevich Y, Li C, Müllen K. Chem Eur J, 2011, 17: 12756–12762Google Scholar
  122. 122.
    Ozaki K, Kawasumi K, Shibata M, Ito H, Itami K. Nat Commun, 2015, 6: 6251Google Scholar
  123. 123.
    Kato K, Segawa Y, Itami K. Can J Chem, 2016, 95: 329–333Google Scholar
  124. 124.
    Narita A, Feng X, Müllen K. Chem Record, 2015, 15: 295–309Google Scholar
  125. 125.
    Hou ICY, Hu Y, Narita A, Müllen K. Polym J, 2018, 50: 3–20Google Scholar
  126. 126.
    Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K. J Am Chem Soc, 2008, 130: 4216–4217Google Scholar
  127. 127.
    Schwab MG, Narita A, Hernandez Y, Balandina T, Mali KS, De Feyter S, Feng X, Müllen K. J Am Chem Soc, 2012, 134: 18169–18172Google Scholar
  128. 128.
    Wu J, Gherghel L, Watson MD, Li J, Wang Z, Simpson CD, Kolb U, Müllen K. Macromolecules, 2003, 36: 7082–7089Google Scholar
  129. 129.
    Shifrina ZB, Averina MS, Rusanov AL, Wagner M, Müllen K. Macromolecules, 2000, 33: 3525–3529Google Scholar
  130. 130.
    Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AHR, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K. Nat Chem, 2013, 6: 126–132Google Scholar
  131. 131.
    Konnerth R, Cervetti C, Narita A, Feng X, Müllen K, Hoyer A, Burghard M, Kern K, Dressel M, Bogani L. Nanoscale, 2015, 7: 12807–12811Google Scholar
  132. 132.
    Soavi G, Dal Conte S, Manzoni C, Viola D, Narita A, Hu Y, Feng X, Hohenester U, Molinari E, Prezzi D, Müllen K, Cerullo G. Nat Commun, 2016, 7: 11010Google Scholar
  133. 133.
    Verzhbitskiy IA, Corato MD, Ruini A, Molinari E, Narita A, Hu Y, Schwab MG, Bruna M, Yoon D, Milana S, Feng X, Müllen K, Ferrari AC, Casiraghi C, Prezzi D. Nano Lett, 2016, 16: 3442–3447Google Scholar
  134. 134.
    Zhao S, Rondin L, Delport G, Voisin C, Beser U, Hu Y, Feng X, Müllen K, Narita A, Campidelli S, Lauret JS. Carbon, 2017, 119: 235–240Google Scholar
  135. 135.
    El Gemayel M, Narita A, Dössel LF, Sundaram RS, Kiersnowski A, Pisula W, Hansen MR, Ferrari AC, Orgiu E, Feng X, Müllen K, Samori P. Nanoscale, 2014, 6: 6301–6314Google Scholar
  136. 136.
    Abbas AN, Liu G, Narita A, Orosco M, Feng X, Müllen K, Zhou C. J Am Chem Soc, 2014, 136: 7555–7558Google Scholar
  137. 137.
    Ivanov I, Hu Y, Osella S, Beser U, Wang HI, Beljonne D, Narita A, Müllen K, Turchinovich D, Bonn M. J Am Chem Soc, 2017, 139: 7982–7988Google Scholar
  138. 138.
    Jensen SA, Ulbricht R, Narita A, Feng X, Müllen K, Hertel T, Turchinovich D, Bonn M. Nano Lett, 2013, 13: 5925–5930Google Scholar
  139. 139.
    Huang Y, Mai Y, Beser U, Teyssandier J, Velpula G, van Gorp H, Straasø LA, Hansen MR, Rizzo D, Casiraghi C, Yang R, Zhang G, Wu D, Zhang F, Yan D, De Feyter S, Müllen K, Feng X. J Am Chem Soc, 2016, 138: 10136–10139Google Scholar
  140. 140.
    Yang W, Lucotti A, Tommasini M, Chalifoux WA. J Am Chem Soc, 2016, 138: 9137–9144Google Scholar
  141. 141.
    Schwab MG, Narita A, Osella S, Hu Y, Maghsoumi A, Mavrinsky A, Pisula W, Castiglioni C, Tommasini M, Beljonne D, Feng X, Müllen K. Chem Asian J, 2015, 10: 2134–2138Google Scholar
  142. 142.
    Li G, Yoon KY, Zhong X, Wang J, Zhang R, Guest JR, Wen J, Zhu XY, Dong G. Nat Commun, 2018, 9: 1687Google Scholar
  143. 143.
    Li G, Yoon KY, Zhong X, Zhu X, Dong G. Chem Eur J, 2016, 22: 9116–9120Google Scholar
  144. 144.
    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R. Nature, 2010, 466: 470–473Google Scholar
  145. 145.
    Zhang H, Lin H, Sun K, Chen L, Zagranyarski Y, Aghdassi N, Duhm S, Li Q, Zhong D, Li Y, Müllen K, Fuchs H, Chi L. J Am Chem Soc, 2015, 137: 4022–4025Google Scholar
  146. 146.
    Sun K, Ji P, Zhang H, Niu K, Li L, Chen A, Li Q, Müllen K, Chi L. Faraday Discuss, 2017, 204: 297–305Google Scholar
  147. 147.
    Sun Q, Zhang C, Li Z, Kong H, Tan Q, Hu A, Xu W. J Am Chem Soc, 2013, 135: 8448–8451Google Scholar
  148. 148.
    Chen Z, Zhang W, Palma CA, Lodi Rizzini A, Liu B, Abbas A, Richter N, Martini L, Wang XY, Cavani N, Lu H, Mishra N, Coletti C, Berger R, Klappenberger F, Kläui M, Candini A, Affronte M, Zhou C, de Renzi V, del Pennino U, Barth JV, Räder HJ, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 15488–15496Google Scholar
  149. 149.
    Sakaguchi H, Kawagoe Y, Hirano Y, Iruka T, Yano M, Nakae T. Adv Mater, 2014, 26: 4134–4138Google Scholar
  150. 150.
    Yang S, Lohe MR, Müllen K, Feng X. Adv Mater, 2016, 28: 6213–6221Google Scholar
  151. 151.
    Lavin-Lopez MP, Valverde JL, Sanchez-Silva L, Romero A. Ind Eng Chem Res, 2016, 55: 845–855Google Scholar
  152. 152.
    Gao H, Hu G. RSC Adv, 2016, 6: 10132–10143Google Scholar
  153. 153.
    Yi M, Shen Z. J Mater Chem A, 2015, 3: 11700–11715Google Scholar
  154. 154.
    Yazdi G, Iakimov T, Yakimova R. Crystals, 2016, 6: 53Google Scholar
  155. 155.
    Wang H, Yu G. Adv Mater, 2016, 28: 4956–4975Google Scholar
  156. 156.
    Li X, Colombo L, Ruoff RS. Adv Mater, 2016, 28: 6247–6252Google Scholar
  157. 157.
    Chen X, Wu B, Liu Y. Chem Soc Rev, 2016, 45: 2057–2074Google Scholar
  158. 158.
    Jiang L, Niu T, Lu X, Dong H, Chen W, Liu Y, Hu W, Zhu D. J Am Chem Soc, 2013, 135: 9050–9054Google Scholar
  159. 159.
    Liang T, Kong Y, Chen H, Xu M. Chin J Chem, 2016, 34: 32–40Google Scholar
  160. 160.
    Magda GZ, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró LP, Tapasztó L. Nature, 2014, 514: 608–611Google Scholar
  161. 161.
    Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano, 2017, 11: 1380–1388Google Scholar
  162. 162.
    Jordan RS, Li YL, Lin CW, McCurdy RD, Lin JB, Brosmer JL, Marsh KL, Khan SI, Houk KN, Kaner RB, Rubin Y. J Am Chem Soc, 2017, 139: 15878–15890Google Scholar
  163. 163.
    Jänsch D, Ivanov I, Zagranyarski Y, Duznovic I, Baumgarten M, Turchinovich D, Li C, Bonn M, Müllen K. Chem Eur J, 2017, 23: 4870–4875Google Scholar
  164. 164.
    Chen Z, Wang HI, Bilbao N, Teyssandier J, Prechtl T, Cavani N, Tries A, Biagi R, de Renzi V, Feng X, Kläui M, de Feyter S, Bonn M, Narita A, Müllen K. J Am Chem Soc, 2017, 139: 9483–9486Google Scholar
  165. 165.
    Jordan RS, Wang Y, McCurdy RD, Yeung MT, Marsh KL, Khan SI, Kaner RB, Rubin Y. Chem, 2016, 1: 78–90Google Scholar
  166. 166.
    Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P. Nat Commun, 2015, 6: 10177Google Scholar
  167. 167.
    Basagni A, Sedona F, Pignedoli CA, Cattelan M, Nicolas L, Casarin M, Sambi M. J Am Chem Soc, 2015, 137: 1802–1808Google Scholar
  168. 168.
    Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF. ACS Nano, 2013, 7: 6123–6128Google Scholar
  169. 169.
    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K. Nat Nanotech, 2016, 11: 930–935Google Scholar
  170. 170.
    Huang H, Wei D, Sun J, Wong SL, Feng YP, Neto AHC, Wee ATS. Sci Rep, 2012, 2: 983Google Scholar
  171. 171.
    Yang L, Park CH, Son YW, Cohen ML, Louie SG. Phys Rev Lett, 2007, 99: 186801Google Scholar
  172. 172.
    Son YW, Cohen ML, Louie SG. Nature, 2006, 444: 347–349Google Scholar
  173. 173.
    Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R. Nature, 2016, 531: 489–492Google Scholar
  174. 174.
    Jia X, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus MS. Nanoscale, 2011, 3: 86–95Google Scholar
  175. 175.
    Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A. Science, 2009, 323: 1705–1708Google Scholar
  176. 176.
    Dumslaff T, Yang B, Maghsoumi A, Velpula G, Mali KS, Castiglioni C, de Feyter S, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4726–4729Google Scholar
  177. 177.
    Gröning O, Wang S, Yao X, Pignedoli CA, Borin Barin G, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P, Fasel R. Nature, 2018, 560: 209–213Google Scholar
  178. 178.
    Rizzo DJ, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie SG, Crommie MF, Fischer FR. Nature, 2018, 560: 204–208Google Scholar
  179. 179.
    Anthony JE. Angew Chem Int Ed, 2008, 47: 452–483Google Scholar
  180. 180.
    Anthony JE, Brooks JS, Eaton DL, Parkin SR. J Am Chem Soc, 2001, 123: 9482–9483Google Scholar
  181. 181.
    Dorel R, Echavarren AM. Eur J Org Chem, 2017, 2017(1): 14–24Google Scholar
  182. 182.
    Herwig PT, Müllen K. Adv Mater, 1999, 11: 480–483Google Scholar
  183. 183.
    Mondal R, Shah BK, Neckers DC. J Am Chem Soc, 2006, 128: 9612–9613Google Scholar
  184. 184.
    Mondal R, Tonshoff C, Khon D, Neckers DC, Bettinger HF. J Am Chem Soc, 2009, 131: 14281–14289Google Scholar
  185. 185.
    Tönshoff C, Bettinger HF. Angew Chem Int Ed, 2010, 49: 4125–4128Google Scholar
  186. 186.
    Krüger J, Garcia F, Eisenhut F, Skidin D, Alonso JM, Guitián E, Pérez D, Cuniberti G, Moresco F, Peña D. Angew Chem Int Ed, 2017, 56: 11945–11948Google Scholar
  187. 187.
    Zuzak R, Dorel R, Kolmer M, Szymonski M, Godlewski S, Echavarren AM. Angew Chem Int Ed, 2018, 57: 10500–10505Google Scholar
  188. 188.
    Scholl R, Mansfeld J. Ber Dtsch Chem Ges, 1910, 43: 1734–1746Google Scholar
  189. 189.
    Scholl R, Seer C, Weitzenböck R. Ber Dtsch Chem Ges, 1910, 43: 2202–2209Google Scholar
  190. 190.
    Clar E. Chem Ber, 1948, 81: 52–63Google Scholar
  191. 191.
    Clar E. Chem Ber, 1949, 82: 46–60Google Scholar
  192. 192.
    Ajayakumar MR, Fu Y, Ma J, Hennersdorf F, Komber H, Weigand JJ, Alfonsov A, Popov AA, Berger R, Liu J, Müllen K, Feng X. J Am Chem Soc, 2018, 140: 6240–6244Google Scholar
  193. 193.
    Ni Y, Gopalakrishna TY, Phan H, Herng TS, Wu S, Han Y, Ding J, Wu J. Angew Chem Int Ed, 2018, 57: 9697–9701Google Scholar
  194. 194.
    Rogers C, Chen C, Pedramrazi Z, Omrani AA, Tsai HZ, Jung HS, Lin S, Crommie MF, Fischer FR. Angew Chem Int Ed, 2015, 54: 15143–15146Google Scholar
  195. 195.
    Zeng W, Qi Q, Wu J. Eur J Org Chem, 2017, 2018: 7Google Scholar
  196. 196.
    Zeng W, Phan H, Herng TS, Gopalakrishna TY, Aratani N, Zeng Z, Yamada H, Ding J, Wu J. Chem, 2017, 2: 81–92Google Scholar
  197. 197.
    Konishi A, Hirao Y, Matsumoto K, Kurata H, Kishi R, Shigeta Y, Nakano M, Tokunaga K, Kamada K, Kubo T. J Am Chem Soc, 2013, 135: 1430–1437Google Scholar
  198. 198.
    Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T. J Am Chem Soc, 2010, 132: 11021–11023Google Scholar
  199. 199.
    Wang S, Talirz L, Pignedoli CA, Feng X, Müllen K, Fasel R, Ruffieux P. Nat Commun, 2016, 7: 11507Google Scholar
  200. 200.
    Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli CA. J Am Chem Soc, 2013, 135: 2060–2063Google Scholar
  201. 201.
    Paternò GM, Chen Q, Wang XY, Liu J, Motti SG, Petrozza A, Feng X, Lanzani G, Müllen K, Narita A, Scotognella F. Angew Chem Int Ed, 2017, 56: 6753–6757Google Scholar
  202. 202.
    Bellunato A, Arjmandi Tash H, Cesa Y, Schneider GF. Chem-Phys Chem, 2016, 17: 785–801Google Scholar
  203. 203.
    Suenaga K, Koshino M. Nature, 2010, 468: 1088–1090Google Scholar
  204. 204.
    Zhang X, Xin J, Ding F. Nanoscale, 2013, 5: 2556–2569Google Scholar
  205. 205.
    Clar E, Stephen JF. Tetrahedron, 1965, 21: 467–470Google Scholar
  206. 206.
    Ball M, Zhong Y, Wu Y, Schenck C, Ng F, Steigerwald M, Xiao S, Nuckolls C. Acc Chem Res, 2015, 48: 267–276Google Scholar
  207. 207.
    Liu J, Li BW, Tan YZ, Giannakopoulos A, Sanchez-Sanchez C, Beljonne D, Ruffieux P, Fasel R, Feng X, Müllen K. J Am Chem Soc, 2015, 137: 6097–6103Google Scholar
  208. 208.
    Pradhan A, Dechambenoit P, Bock H, Durola F. Angew Chem Int Ed, 2011, 50: 12582–12585Google Scholar
  209. 209.
    Luo J, Xu X, Mao R, Miao Q. J Am Chem Soc, 2012, 134: 13796–13803Google Scholar
  210. 210.
    Li C, Yang Y, Miao Q. Chem Asian J, 2018, 13: 884–894Google Scholar
  211. 211.
    Lin WB, Li M, Fang L, Chen CF. Chin Chem Lett, 2018, 29: 40–46Google Scholar
  212. 212.
    Berezhnaia V, Roy M, Vanthuyne N, Villa M, Naubron JV, Rodriguez J, Coquerel Y, Gingras M. J Am Chem Soc, 2017, 139: 18508–18511Google Scholar
  213. 213.
    Hosokawa T, Takahashi Y, Matsushima T, Watanabe S, Kikkawa S, Azumaya I, Tsurusaki A, Kamikawa K. J Am Chem Soc, 2017, 139: 18512–18521Google Scholar
  214. 214.
    Fujikawa T, Segawa Y, Itami K. J Am Chem Soc, 2015, 137: 7763–7768Google Scholar
  215. 215.
    Zhu Y, Xia Z, Cai Z, Yuan Z, Jiang N, Li T, Wang Y, Guo X, Li Z, Ma S, Zhong D, Li Y, Wang J. J Am Chem Soc, 2018, 140: 4222–4226Google Scholar
  216. 216.
    Wang Y, Yin Z, Zhu Y, Gu J, Li Y, Wang J. Angew Chem Int Ed, 2019, 58: 587–591Google Scholar
  217. 217.
    Schuster NJ, Paley DW, Jockusch S, Ng F, Steigerwald ML, Nuckolls C. Angew Chem Int Ed, 2016, 55: 13519–13523Google Scholar
  218. 218.
    Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martin N. Angew Chem Int Ed, 2018, 57: 6774–6779Google Scholar
  219. 219.
    Nakakuki Y, Hirose T, Sotome H, Miyasaka H, Matsuda K. J Am Chem Soc, 2018, 140: 4317–4326Google Scholar
  220. 220.
    Daigle M, Miao D, Lucotti A, Tommasini M, Morin JF. Angew Chem Int Ed, 2017, 56: 6213–6217Google Scholar
  221. 221.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS. Chem Rev, 2012, 112: 6156–6214Google Scholar
  222. 222.
    Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, Steinrück HP, Spiecker E, Hauke F, Hirsch A. Nat Chem, 2011, 3: 279–286Google Scholar
  223. 223.
    Chua CK, Pumera M. Chem Soc Rev, 2013, 42: 3222Google Scholar
  224. 224.
    Eigler S, Hirsch A. Angew Chem Int Ed, 2014, 53: 7720–7738Google Scholar
  225. 225.
    Chen D, Feng H, Li J. Chem Rev, 2012, 112: 6027–6053Google Scholar
  226. 226.
    Fogel Y, Kastler M, Wang Z, Andrienko D, Bodwell GJ, Müllen K. J Am Chem Soc, 2007, 129: 11743–11749Google Scholar
  227. 227.
    Zhou C, Chen S, Lou J, Wang J, Yang Q, Liu C, Huang D, Zhu T. Nanoscale Res Lett, 2014, 9: 26Google Scholar
  228. 228.
    Pumera M, Wong CHA. Chem Soc Rev, 2013, 42: 5987Google Scholar
  229. 229.
    Feng W, Long P, Feng Y, Li Y. Adv Sci, 2016, 3: 1500413Google Scholar
  230. 230.
    Karlický F, Kumara Ramanatha Datta K, Otyepka M, Zboril R. ACS Nano, 2013, 7: 6434–6464Google Scholar
  231. 231.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Science, 2009, 323: 610–613Google Scholar
  232. 232.
    Savchenko A. Science, 2009, 323: 589–590Google Scholar
  233. 233.
    Yang Z, Sun Y, Alemany LB, Narayanan TN, Billups WE. J Am Chem Soc, 2012, 134: 18689–18694Google Scholar
  234. 234.
    Watson MD, Debije MG, Warman JM, Müllen K. J Am Chem Soc, 2004, 126: 766–771Google Scholar
  235. 235.
    Li B, Zhou L, Wu D, Peng H, Yan K, Zhou Y, Liu Z. ACS Nano, 2011, 5: 5957–5961Google Scholar
  236. 236.
    Wu J, Xie L, Li Y, Wang H, Ouyang Y, Guo J, Dai H. J Am Chem Soc, 2011, 133: 19668–19671Google Scholar
  237. 237.
    Liu YM, Hou H, Zhou YZ, Zhao XJ, Tang C, Tan YZ, Müllen K. Nat Commun, 2018, 9: 1901Google Scholar
  238. 238.
    Tan YZ, Osella S, Liu Y, Yang B, Beljonne D, Feng X, Müllen K. Angew Chem Int Ed, 2015, 54: 2927–2931Google Scholar
  239. 239.
    Cao J, Liu YM, Jing X, Yin J, Li J, Xu B, Tan YZ, Zheng N. J Am Chem Soc, 2015, 137: 10914–10917Google Scholar
  240. 240.
    Wu ZS, Tan YZ, Zheng S, Wang S, Parvez K, Qin J, Shi X, Sun C, Bao X, Feng X, Müllen K. J Am Chem Soc, 2017, 139: 4506–4512Google Scholar
  241. 241.
    Dong R, Pfeffermann M, Skidin D, Wang F, Fu Y, Narita A, Tommasini M, Moresco F, Cuniberti G, Berger R, Müllen K, Feng X. J Am Chem Soc, 2017, 139: 2168–2171Google Scholar
  242. 242.
    Keerthi A, Radha B, Rizzo D, Lu H, Diez Cabanes V, Hou ICY, Beljonne D, Cornil J, Casiraghi C, Baumgarten M, Müllen K, Narita A. J Am Chem Soc, 2017, 139: 16454–16457Google Scholar
  243. 243.
    Dössel LF, Kamm V, Howard IA, Laquai F, Pisula W, Feng X, Li C, Takase M, Kudernac T, de Feyter S, Müllen K. J Am Chem Soc, 2012, 134: 5876–5886Google Scholar
  244. 244.
    Slota M, Keerthi A, Myers WK, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert CJ, Narita A, Müllen K, Bogani L. Nature, 2018, 557: 691–695Google Scholar
  245. 245.
    Pesin D, MacDonald AH. Nat Mater, 2012, 11: 409–416Google Scholar
  246. 246.
    Rogers C, Perkins WS, Veber G, Williams TE, Cloke RR, Fischer FR. J Am Chem Soc, 2017, 139: 4052–4061Google Scholar
  247. 247.
    Joshi D, Hauser M, Veber G, Berl A, Xu K, Fischer FR. J Am Chem Soc, 2018, 140: 9574–9580Google Scholar
  248. 248.
    González-Herrero H, Gómez-Rodríguez JM, Mallet P, Moaied M, Palacios JJ, Salgado C, Ugeda MM, Veuillen JY, Yndurain F, Brihuega I. Science, 2016, 352: 437–441Google Scholar
  249. 249.
    Araujo PT, Terrones M, Dresselhaus MS. Mater Today, 2012, 15: 98–109Google Scholar
  250. 250.
    Banhart F, Kotakoski J, Krasheninnikov AV. ACS Nano, 2011, 5: 26–41Google Scholar
  251. 251.
    Liu L, Qing M, Wang Y, Chen S. J Mater Sci Tech, 2015, 31: 599–606Google Scholar
  252. 252.
    Jing N, Xue Q, Ling C, Shan M, Zhang T, Zhou X, Jiao Z. RSC Adv, 2012, 2: 9124Google Scholar
  253. 253.
    Mortazavi B, Ahzi S. Carbon, 2013, 63: 460–470Google Scholar
  254. 254.
    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Nature, 2004, 430: 870–873Google Scholar
  255. 255.
    Stone AJ, Wales DJ. Chem Phys Lett, 1986, 128: 501–503Google Scholar
  256. 256.
    Thrower PA. Chem Phys Carbon, 1969, 5: 217–319Google Scholar
  257. 257.
    Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA. Nature, 2011, 469: 389–392Google Scholar
  258. 258.
    Yazyev OV, Louie SG. Phys Rev B, 2010, 81: 195420Google Scholar
  259. 259.
    Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M. Nat Nanotech, 2010, 5: 326–329Google Scholar
  260. 260.
    Yazyev OV, Louie SG. Nat Mater, 2010, 9: 806–809Google Scholar
  261. 261.
    Singh R, Kroll P. J Phys: Condens Matter, 2009, 21: 196002Google Scholar
  262. 262.
    Ma Y, Lehtinen PO, Foster AS, Nieminen RM. New J Phys, 2004, 6: 68Google Scholar
  263. 263.
    Valencia AM, Caldas MJ. Phys Rev B, 2017, 96: 125431Google Scholar
  264. 264.
    Kotakoski J, Meyer JC, Kurasch S, Santos-Cottin D, Kaiser U, Krasheninnikov AV. Phys Rev B, 2011, 83: 245420Google Scholar
  265. 265.
    Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A. Nano Lett, 2008, 8: 3582–3586Google Scholar
  266. 266.
    Robertson AW, Allen CS, Wu YA, He K, Olivier J, Neethling J, Kirkland AI, Warner JH. Nat Commun, 2012, 3: 1144Google Scholar
  267. 267.
    Tang M, Colombo L, Zhu J, Diaz de La Rubia T. Phys Rev B, 1997, 55: 14279–14289Google Scholar
  268. 268.
    Lusk MT, Carr LD. Phys Rev Lett, 2008, 100: 175503Google Scholar
  269. 269.
    Lusk MT, Wu DT, Carr LD. Phys Rev B, 2010, 81: 155444Google Scholar
  270. 270.
    Anderson AG, Daugs ED, Kao LG, Wang JF. J Org Chem, 1986, 51: 2961–2965Google Scholar
  271. 271.
    Vogel E, Markowitz G, Schmalstieg L, Itô S, Breuckmann R, Roth WR. Angew Chem Int Ed, 1984, 23: 719–720Google Scholar
  272. 272.
    Becker BC, Huber W, Schnieders C, Müllen K. Chem Ber, 1983, 14: noGoogle Scholar
  273. 273.
    Nestoros E, Stuparu MC. Chem Commun, 2018, 54: 6503–6519Google Scholar
  274. 274.
    Zhu J, Huang Y, Mei W, Zhao C, Zhang C, Zhang J, Amiinu IS, Mu S. Angew Chem Int Ed, 2019, 58: 3859–3864Google Scholar
  275. 275.
    Liu J, Osella S, Ma J, Berger R, Beljonne D, Schollmeyer D, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 8364–8367Google Scholar
  276. 276.
    Mishra S, Lohr TG, Pignedoli CA, Liu J, Berger R, Urgel JI, Müllen K, Feng X, Ruffieux P, Fasel R. ACS Nano, 2018, 12: 11917–11927Google Scholar
  277. 277.
    Yamamoto K, Harada T, Nakazaki M, Naka T, Kai Y, Harada S, Kasai N. J Am Chem Soc, 1983, 105: 7171–7172Google Scholar
  278. 278.
    Yamamoto K, Saitho Y, Iwaki D, Ooka T. Angew Chem Int Ed Engl, 1991, 30: 1173–1174Google Scholar
  279. 279.
    Cheung KY, Xu X, Miao Q. J Am Chem Soc, 2015, 137: 3910–3914Google Scholar
  280. 280.
    Pun SH, Chan CK, Luo J, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 57: 1581–1586Google Scholar
  281. 281.
    Fernández-García JM, Evans PJ, Medina Rivero S, Fernández I, García-Fresnadillo D, Perles J, Casado J, Martin N. J Am Chem Soc, 2018, 140: 17188–17196Google Scholar
  282. 282.
    Feng C-N, Kuo M-Y, Wu Y-T. Angew Chem Int Ed, 2013, 52: 7791–7794Google Scholar
  283. 283.
    Sakamoto Y, Suzuki T. J Am Chem Soc, 2013, 135: 14074–14077Google Scholar
  284. 284.
    Miller RW, Duncan AK, Schneebeli ST, Gray DL, Whalley AC. Chem Eur J, 2014, 20: 3705–3711Google Scholar
  285. 285.
    Cheung KY, Chan CK, Liu Z, Miao Q. Angew Chem Int Ed, 2017, 56: 9003–9007Google Scholar
  286. 286.
    Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang B, Zhang Q, Titirici MM, Wei F. Adv Mater, 2016, 28: 6845–6851Google Scholar
  287. 287.
    Yan X, Jia Y, Yao X. Chem Soc Rev, 2018, 47: 7628–7658Google Scholar
  288. 288.
    Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D. Nat Commun, 2017, 8: 14924Google Scholar
  289. 289.
    Lin Y, Liao Y, Chen Z, Connell JW. Mater Res Lett, 2017, 5: 209–234Google Scholar
  290. 290.
    Yang J, Ma M, Li L, Zhang Y, Huang W, Dong X. Nanoscale, 2014, 6: 13301–13313Google Scholar
  291. 291.
    Bai J, Zhong X, Jiang S, Huang Y, Duan X. Nat Nanotech, 2010, 5: 190–194Google Scholar
  292. 292.
    Liang X, Jung YS, Wu S, Ismach A, Olynick DL, Cabrini S, Bokor J. Nano Lett, 2010, 10: 2454–2460Google Scholar
  293. 293.
    Beser U, Kastler M, Maghsoumi A, Wagner M, Castiglioni C, Tommasini M, Narita A, Feng X, Müllen K. J Am Chem Soc, 2016, 138: 4322–4325Google Scholar
  294. 294.
    Bieri M, Treier M, Cai J, Aït-Mansour K, Ruffieux P, Gröning O, Gröning P, Kastler M, Rieger R, Feng X, Müllen K, Fasel R. Chem Commun, 2009, 58: 6919Google Scholar
  295. 295.
    Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache MV, Paradinas M, Panighel M, Ceballos G, Valenzuela SO, Peña D, Mugarza A. Science, 2018, 360: 199–203Google Scholar
  296. 296.
    Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, Li J, Corso M, Colazzo L, Sedona F, Sánchez-Portal D, Pascual JI, de Oteyza DG. ACS Nano, 2017, 11: 11661–11668Google Scholar
  297. 297.
    Kawai S, Saito S, Osumi S, Yamaguchi S, Foster AS, Spijker P, Meyer E. Nat Commun, 2015, 6: 8098Google Scholar
  298. 298.
    Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P. Chem Soc Rev, 2014, 43: 7067–7098Google Scholar
  299. 299.
    Wang H, Maiyalagan T, Wang X. ACS Catal, 2012, 2: 781–794Google Scholar
  300. 300.
    Xu H, Ma L, Jin Z. J Energy Chem, 2018, 27: 146–160Google Scholar
  301. 301.
    Liang HW, Zhuang X, Brüller S, Feng X, Müllen K. Nat Commun, 2014, 5: 4973Google Scholar
  302. 302.
    Zhang J, Chen G, Müllen K, Feng X. Adv Mater, 2018, 30: 1800528Google Scholar
  303. 303.
    Hu C, Dai L. Adv Mater, 2019, 31: 1804672Google Scholar
  304. 304.
    Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Adv Mater, 2019, 31: 1804799Google Scholar
  305. 305.
    Draper SM, Gregg DJ, Madathil R. J Am Chem Soc, 2002, 124: 3486–3487Google Scholar
  306. 306.
    Draper SM, Gregg DJ, Schofield ER, Browne WR, Duati M, Vos JG, Passaniti P. J Am Chem Soc, 2004, 126: 8694–8701Google Scholar
  307. 307.
    Wijesinghe LP, Lankage BS, Maille GMÓ, Perera SD, Nolan D, Wang L, Draper SM. Chem Commun, 2014, 50: 10637–10640Google Scholar
  308. 308.
    Bronner C, Stremlau S, Gille M, Brauße F, Haase A, Hecht S, Tegeder P. Angew Chem Int Ed, 2013, 52: 4422–4425Google Scholar
  309. 309.
    Zhang Y, Zhang Y, Li G, Lu J, Lin X, Du S, Berger R, Feng X, Müllen K, Gao HJ. Appl Phys Lett, 2014, 105: 023101Google Scholar
  310. 310.
    Cai J, Pignedoli CA, Talirz L, Ruffieux P, Söde H, Liang L, Meunier V, Berger R, Li R, Feng X, Müllen K, Fasel R. Nat Nanotech, 2014, 9: 896–900Google Scholar
  311. 311.
    Li Q, Zhang S, Dai L, Li L. J Am Chem Soc, 2012, 134: 18932–18935Google Scholar
  312. 312.
    Noffke BW, Li Q, Raghavachari K, Li LS. J Am Chem Soc, 2016, 138: 13923–13929Google Scholar
  313. 313.
    Wang XY, Richter M, He Y, Björk J, Riss A, Rajesh R, Garnica M, Hennersdorf F, Weigand JJ, Narita A, Berger R, Feng X, Auwärter W, Barth JV, Palma CA, Müllen K. Nat Commun, 2017, 8: 1948Google Scholar
  314. 314.
    Berger R, Giannakopoulos A, Ravat P, Wagner M, Beljonne D, Feng X, Müllen K. Angew Chem Int Ed, 2014, 53: 10520–10524Google Scholar
  315. 315.
    Berger R, Wagner M, Feng X, Müllen K. Chem Sci, 2015, 6: 436–441Google Scholar
  316. 316.
    Zhang L, Xia Z. J Phys Chem C, 2011, 115: 11170–11176Google Scholar
  317. 317.
    Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Science, 2016, 351: 361–365Google Scholar
  318. 318.
    Singh SK, Takeyasu K, Nakamura J. Adv Mater, 2019, 31: 1804297Google Scholar
  319. 319.
    Wang T, Chen ZX, Chen YG, Yang LJ, Yang XD, Ye JY, Xia HP, Zhou ZY, Sun SG. ACS Energy Lett, 2018, 3: 986–991Google Scholar
  320. 320.
    Takase M, Enkelmann V, Sebastiani D, Baumgarten M, Müllen K. Angew Chem Int Ed, 2007, 46: 5524–5527Google Scholar
  321. 321.
    Lazerges M, Jouini M, Hapiot P, Guiriec P, Lacaze PC. J Phys Chem A, 2003, 107: 5042–5048Google Scholar
  322. 322.
    Takase M, Narita T, Fujita W, Asano MS, Nishinaga T, Benten H, Yoza K, Müllen K. J Am Chem Soc, 2013, 135: 8031–8040Google Scholar
  323. 323.
    Oki K, Takase M, Mori S, Shiotari A, Sugimoto Y, Ohara K, Okujima T, Uno H. J Am Chem Soc, 2018, 140: 10430–10434Google Scholar
  324. 324.
    Żyla-Karwowska M, Zhylitskaya H, Cybińska J, Lis T, Chmielewski PJ, Stepieh M. Angew Chem Int Ed, 2016, 55: 14658–14662Google Scholar
  325. 325.
    Gońka E, Chmielewski PJ, Lis T, Stępień M. J Am Chem Soc, 2014, 136: 16399–16410Google Scholar
  326. 326.
    Żyla M, Gońka E, Chmielewski PJ, Cybińska J, Stępień M. Chem Sci, 2016, 7: 286–294Google Scholar
  327. 327.
    Yokoi H, Hiraoka Y, Hiroto S, Sakamaki D, Seki S, Shinokubo H. Nat Commun, 2015, 6: 8215Google Scholar
  328. 328.
    Ito S, Tokimaru Y, Nozaki K. Angew Chem Int Ed, 2015, 54: 7256–7260Google Scholar
  329. 329.
    Tokimaru Y, Ito S, Nozaki K. Angew Chem Int Ed, 2018, 57: 9818–9822Google Scholar
  330. 330.
    Mishra S, Krzeszewski M, Pignedoli CA, Ruffieux P, Fasel R, Gryko DT. Nat Commun, 2018, 9: 1714Google Scholar
  331. 331.
    Ito Y, Christodoulou C, Nardi MV, Koch N, Kläui M, Sachdev H, Müllen K. J Am Chem Soc, 2015, 137: 7678–7685Google Scholar
  332. 332.
    Błoński P, Tuček J, Sofer Z, Mazánek V, Petr M, Pumera M, Otyepka M, Zbořil R. J Am Chem Soc, 2017, 139: 3171–3180Google Scholar
  333. 333.
    Agnoli S, Favaro M. J Mater Chem A, 2016, 4: 5002–5025Google Scholar
  334. 334.
    Tang YB, Yin LC, Yang Y, Bo XH, Cao YL, Wang HE, Zhang WJ, Bello I, Lee ST, Cheng HM, Lee CS. ACS Nano, 2012, 6: 1970–1978Google Scholar
  335. 335.
    Wu ZS, Ren W, Xu L, Li F, Cheng HM. ACS Nano, 2011, 5: 5463–5471Google Scholar
  336. 336.
    Han J, Zhang LL, Lee S, Oh J, Lee KS, Potts JR, Ji J, Zhao X, Ruoff RS, Park S. ACS Nano, 2013, 7: 19–26Google Scholar
  337. 337.
    Lv R, Chen G, Li Q, McCreary A, Botello-Méndez A, Morozov SV, Liang L, Declerck X, Perea-López N, Cullen DA, Feng S, Elias AL, Cruz-Silva R, Fujisawa K, Endo M, Kang F, Charlier JC, Meunier V, Pan M, Harutyunyan AR, Novoselov KS, Terrones M. Proc Natl Acad Sci USA, 2015, 112: 14527–14532Google Scholar
  338. 338.
    Yu X, Han P, Wei Z, Huang L, Gu Z, Peng S, Ma J, Zheng G. Joule, 2018, 2: 1610–1622Google Scholar
  339. 339.
    Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. J Am Chem Soc, 2014, 136: 4394–4403Google Scholar
  340. 340.
    Dou C, Saito S, Matsuo K, Hisaki I, Yamaguchi S. Angew Chem Int Ed, 2012, 51: 12206–12210Google Scholar
  341. 341.
    Osumi S, Saito S, Dou C, Matsuo K, Kume K, Yoshikawa H, Awaga K, Yamaguchi S. Chem Sci, 2016, 7: 219–227Google Scholar
  342. 342.
    Cloke RR, Marangoni T, Nguyen GD, Joshi T, Rizzo DJ, Bronner C, Cao T, Louie SG, Crommie MF, Fischer FR. J Am Chem Soc, 2015, 137: 8872–8875Google Scholar
  343. 343.
    Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L. Angew Chem Int Ed, 2012, 51: 4209–4212Google Scholar
  344. 344.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM. Nat Mater, 2010, 9: 430–435Google Scholar
  345. 345.
    Wang XY, Wang JY, Pei J. Chem Eur J, 2014, 21: 3528–3539Google Scholar
  346. 346.
    Wang XY, Zhuang FD, Wang RB, Wang XC, Cao XY, Wang JY, Pei J. J Am Chem Soc, 2014, 136: 3764–3767Google Scholar
  347. 347.
    Zhong Z, Wang XY, Zhuang FD, Ai N, Wang J, Wang JY, Pei J, Peng J, Cao Y. J Mater Chem A, 2016, 4: 15420–15425Google Scholar
  348. 348.
    Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 1195–1198Google Scholar
  349. 349.
    Nakatsuka S, Yasuda N, Hatakeyama T. J Am Chem Soc, 2018, 140: 13562–13565Google Scholar
  350. 350.
    Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster AS. Sci Adv, 2018, 4: eaar7181Google Scholar
  351. 351.
    Müller M, Behnle S, Maichle-Mössmer C, Bettinger HF. Chem Commun, 2014, 50: 7821–7823Google Scholar
  352. 352.
    Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor MJ, Schaub R, Bettinger HF. Angew Chem Int Ed, 2015, 54: 8284–8286Google Scholar
  353. 353.
    Dosso J, Tasseroul J, Fasano F, Marinelli D, Biot N, Fermi A, Bonifazi D. Angew Chem Int Ed, 2017, 56: 4483–4487Google Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.State Key Laboratory of Elemento-Organic Chemistry, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations