Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells

  • Jiajun Lu
  • Shan-Ci Chen
  • Qingdong ZhengEmail author


Defect passivation is an important strategy to achieve perovskite solar cells (PVSCs) with enhanced power conversion efficiencies (PCEs) and improved stability because the trap states induced by defects in the interfaces and grain boundaries of perovskites are harmful to both large open circuit voltage and high photocurrent of devices. Here, zinc cations (Zn2+) were used as a dopant to passivate defects of the CsPbI2Br perovskite leading to Zn2+-doped CsPbI2Br film with fewer trap states, improved charge transportation, and enhanced light-harvesting ability. Thus, the best-performance PVSC based on CsPbI2Br with the optimal Zn2+ doping shows a higher PCE of 12.16% with a larger open-circuit voltage (VOC) of 1.236 V, an improved shortcircuit current (JSC) of 15.61 mA cm−2 in comparison with the control device based on the pure CsPbI2Br which exhibits a PCE of 10.21% with a VOC of 1.123 V, a JSC of 13.27 mA cm−2. Time-resolved photoluminescence results show that the Zn2+ doping leads to perovskite film with extended photoluminescence lifetime which means a longer diffusion length and subsequently enhanced photocurrent and open circuit voltage. This work provides a simple strategy to boost the performance of PVSCs through Zn2+ doping.


defect passivation Zn(II) doping all-inorganic perovskite solar cells power conversion efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (U1605241), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH032), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20030300). We thank Prof. Zhijun Ning and Mr. Xianyuan Jiang for their help with SEM, UPS, and EDX elemental mapping measurements (ShanghaiTech University).

Supplementary material

11426_2019_9486_MOESM1_ESM.pdf (724 kb)
Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells


  1. 1.
    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948CrossRefGoogle Scholar
  2. 2.
    Li M, Wang ZK, Kang T, Yang Y, Gao X, Hsu CS, Li Y, Liao LS. Nano Energy, 2018, 43: 47–54CrossRefGoogle Scholar
  3. 3.
    McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ. Science, 2016, 351: 151–155CrossRefGoogle Scholar
  4. 4.
    Jeon NJ, Na H, Jung EH, Yang TY, Lee YG, Kim G, Shin HW, Il Seok S, Lee J, Seo J. Nat Energy, 2018, 3: 682–689CrossRefGoogle Scholar
  5. 5.
    Polman A, Knight M, Garnett EC, Ehrler B, Sinke WC. Science, 2016, 352: aad4424Google Scholar
  6. 6.
    Wang Z, Shi Z, Li T, Chen Y, Huang W. Angew Chem Int Ed, 2017, 56: 1190–1212CrossRefGoogle Scholar
  7. 7.
    Akbulatov AF, Luchkin SY, Frolova LA, Dremova NN, Gerasimov KL, Zhidkov IS, Anokhin DV, Kurmaev EZ, Stevenson KJ, Troshin PA. J Phys Chem Lett, 2017, 8: 1211–1218CrossRefGoogle Scholar
  8. 8.
    Lee JW, Kim DH, Kim HS, Seo SW, Cho SM, Park NG. Adv Energy Mater, 2015, 5: 1501310Google Scholar
  9. 9.
    Sutter-Fella CM, Ngo QP, Cefarin N, Gardner KL, Tamura N, Stan CV, Drisdell WS, Javey A, Toma FM, Sharp ID. Nano Lett, 2018, 18: 3473–3480CrossRefGoogle Scholar
  10. 10.
    Zhou W, Zhao Y, Zhou X, Fu R, Li Q, Zhao Y, Liu K, Yu D, Zhao Q. J Phys Chem Lett, 2017, 8: 4122–4128CrossRefGoogle Scholar
  11. 11.
    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y. J Am Chem Soc, 2018, 140: 3825–3828CrossRefGoogle Scholar
  12. 12.
    Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z, Liu J. J Am Chem Soc, 2016, 138: 15829–15832CrossRefGoogle Scholar
  13. 13.
    Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM. Science, 2016, 354: 92–95CrossRefGoogle Scholar
  14. 14.
    Park YH, Jeong I, Bae S, Son HJ, Lee P, Lee J, Lee CH, Ko MJ. Adv Funct Mater, 2017, 27: 1605988Google Scholar
  15. 15.
    Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ. Adv Energy Mater, 2016, 6: 1502458Google Scholar
  16. 16.
    Lu J, Chen SC, Zheng Q. ACS Appl Energy Mater, 2018, 1: 5872–5878CrossRefGoogle Scholar
  17. 17.
    Bai D, Bian H, Jin Z, Wang H, Meng L, Wang Q, (Frank) Liu S. Nano Energy, 2018, 52: 408–415CrossRefGoogle Scholar
  18. 18.
    Zhang L, Li B, Yuan J, Wang M, Shen T, Huang F, Wen W, Cao G, Tian J. J Phys Chem Lett, 2018, 9: 3646–3653CrossRefGoogle Scholar
  19. 19.
    Zeng Q, Zhang X, Liu C, Feng T, Chen Z, Zhang W, Zheng W, Zhang H, Yang B. Sol RRL, 2019, 3: 1800239Google Scholar
  20. 20.
    Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW. Adv Mater, 2017, 29: 1605290Google Scholar
  21. 21.
    Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B. Adv Mater, 2018, 30: 1705393Google Scholar
  22. 22.
    Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip HL, Cao Y. Adv Mater, 2018, 30: 1802509Google Scholar
  23. 23.
    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y. Joule, 2019, 3: 191–204CrossRefGoogle Scholar
  24. 24.
    Zhou Y, Chen J, Bakr OM, Sun HT. Chem Mater, 2018, 30: 6589–6613CrossRefGoogle Scholar
  25. 25.
    Yang F, Hirotani D, Kapil G, Kamarudin MA, Ng CH, Zhang Y, Shen Q, Hayase S. Angew Chem Int Ed, 2018, 57: 12745–12749CrossRefGoogle Scholar
  26. 26.
    Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho-Baillie A. ACS Energy Lett, 2017, 2: 2319–2325CrossRefGoogle Scholar
  27. 27.
    Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF. ACS Energy Lett, 2018, 3: 970–978CrossRefGoogle Scholar
  28. 28.
    Xiang W, Wang Z, Kubicki DJ, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A. Joule, 2019, 3: 205–214CrossRefGoogle Scholar
  29. 29.
    Jin J, Li H, Chen C, Zhang B, Xu L, Dong B, Song H, Dai Q. ACS Appl Mater Interfaces, 2017, 9: 42875–42882CrossRefGoogle Scholar
  30. 30.
    Almutawah ZS, Watthage SC, Song Z, Ahangharnejhad RH, Subedi KK, Shrestha N, Phillips AB, Yan Y, Ellingson RJ, Heben MJ. MRS Adv, 2018, 3: 3237–3242CrossRefGoogle Scholar
  31. 31.
    De Marco N, Zhou H, Chen Q, Sun P, Liu Z, Meng L, Yao EP, Liu Y, Schiffer A, Yang Y. Nano Lett, 2016, 16: 1009–1016CrossRefGoogle Scholar
  32. 32.
    Nanda J, Sarma DD. J Appl Phys, 2001, 90: 2504–2510CrossRefGoogle Scholar
  33. 33.
    Sengar SK, Mehta BR, Gupta G. Appl Phys Lett, 2011, 98: 193115Google Scholar
  34. 34.
    Måtensson N, Nilsson A. J Electron Spectr Relat Phenom, 1995, 75: 209–223CrossRefGoogle Scholar
  35. 35.
    Xu W, Zheng L, Zhang X, Cao Y, Meng T, Wu D, Liu L, Hu W, Gong X. Adv Energy Mater, 2018, 8: 1703178Google Scholar
  36. 36.
    Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gra Tzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170Google Scholar
  37. 37.
    Yang Z, Rajagopal A, Jen AKY. Adv Mater, 2017, 29: 1704418Google Scholar
  38. 38.
    Wang F, Jiang X, Chen H, Shang Y, Liu H, Wei J, Zhou W, He H, Liu W, Ning Z. Joule, 2018, 2: 2732–2743CrossRefGoogle Scholar
  39. 39.
    Yin Z, Zheng Q, Chen SC, Cai D, Ma Y. Adv Energy Mater, 2016, 6: 1501493Google Scholar
  40. 40.
    Hawash Z, Ono LK, Qi Y. Adv Mater Interfaces, 2018, 5: 1700623Google Scholar
  41. 41.
    Chuang CHM, Brown PR, Bulović V, Bawendi MG. Nat Mater, 2014, 13: 796–801CrossRefGoogle Scholar
  42. 42.
    Zhang J, Bai D, Jin Z, Bian H, Wang K, Sun J, Wang Q, Liu SF. Adv Energy Mater, 2018, 8: 1703246Google Scholar
  43. 43.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784Google Scholar
  44. 44.
    Deng Y, Dong Q, Bi C, Yuan Y, Huang J. Adv Energy Mater, 2016, 6: 1600372Google Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  4. 4.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina

Personalised recommendations