Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities

  • Hongjun Li
  • Huajun He
  • Jiancan Yu
  • Yuanjing Cui
  • Yu Yang
  • Guodong QianEmail author


Multi-band microlasers based on single microcrystalline materials with Fabry-Perot (F-P) cavities are critically and technologically essential. Here, we demonstrate simultaneous dual-band lasing output (615 and 685 nm) in metal-organic frameworks (MOFs) and organic dyes hybrid single crystals, which support F-P resonances. Through a two-step assembly strategy, two different types of cationic pyridinium hemicyanine dye molecules can be encapsulated into the channel pores of anionic bio-MOF-1-2Me successfully. In addition, the employment of the host-guest system significantly increases the dye loading, enhances luminescent efficiency, and diminishes the aggregation-caused quenching (ACQ) effect in the resultant MOFs/dye composites. This finding not only combines the characteristic of MOFs materials with excellent luminescent properties of organic dyes, but also points out a simple and promising strategy to design multi-band microlasers based on F-P mechanism, opening a low-cost avenue for the rational design of miniaturized lasers in the future.


dual-band lasing metal-organic frameworks organic dye Fabry-Perot cavity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (U1609219, 51432001, 51632008, 61721005) and Zhejiang Provincial Natural Science Foundation (LD18E020001).

Supplementary material

11426_2019_9485_MOESM1_ESM.pdf (919 kb)
Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities


  1. 1.
    Huang RW, Wei YS, Dong XY, Wu XH, Du CX, Zang SQ, Mak TCW. Nat Chem, 2017, 9: 689–697CrossRefGoogle Scholar
  2. 2.
    Wang R, Dong XY, Du J, Zhao JY, Zang SQ. Adv Mater, 2018, 30: 1703711CrossRefGoogle Scholar
  3. 3.
    Wang HJ, Sha ZJ. Sci China Chem, 2011, 54: 947–950CrossRefGoogle Scholar
  4. 4.
    Zhu Y, Zhou X, Li L, You Y, Huang W. Sci China Chem, 2017, 60: 1581–1587CrossRefGoogle Scholar
  5. 5.
    Jiang K, Zhang L, Hu Q, Yue D, Zhang J, Zhang X, Li B, Cui Y, Yang Y, Qian G. Mater Today Nano, 2018, 2: 50–57CrossRefGoogle Scholar
  6. 6.
    Xiao JD, Jiang HL. Acc Chem Res, 2019, 52: 356–366CrossRefGoogle Scholar
  7. 7.
    Yang Q, Yang CC, Lin CH, Jiang HL. Angew Chem Int Ed, 2019, 58: 3511–3515CrossRefGoogle Scholar
  8. 8.
    Yang Q, Xu Q, Jiang HL. Chem Soc Rev, 2017, 46: 4774–4808CrossRefGoogle Scholar
  9. 9.
    Cui Y, Zhang J, He H, Qian G. Chem Soc Rev, 2018, 47: 5740–5785CrossRefGoogle Scholar
  10. 10.
    He HJ, Cui YJ, Li B, Wang B, Jin CH, Yu JC, Yao LJ, Yang Y, Chen BL, Qian GD. Adv Mater, 2019, 31: e1806897Google Scholar
  11. 11.
    Cheng T, Hu J, Zhou C, Wang Y, Zhang M. Sci China Chem, 2016, 59: 929–947CrossRefGoogle Scholar
  12. 12.
    Fu HR, Yan LB, Wu NT, Ma LF, Zang SQ. J Mater Chem A, 2018, 6: 9183–9191CrossRefGoogle Scholar
  13. 13.
    Yu J, Cui Y, Xu H, Yang Y, Wang Z, Chen B, Qian G. Nat Commun, 2013, 4: 2719CrossRefGoogle Scholar
  14. 14.
    He H, Ma E, Cui Y, Yu J, Yang Y, Song T, Wu CD, Chen X, Chen B, Qian G. Nat Commun, 2016, 7: 11087CrossRefGoogle Scholar
  15. 15.
    Wei Y, Dong H, Wei C, Zhang W, Yan Y, Zhao YS. Adv Mater, 2016, 28: 7424–7429CrossRefGoogle Scholar
  16. 16.
    Liu Y, Dong H, Wang K, Gao Z, Zhang C, Liu X, Zhao YS, Hu F. ACS Appl Mater Interfaces, 2018, 10: 35455–35461CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Dong HY, Liu Y, et al. Chem Comm, 2019Google Scholar
  18. 18.
    Cui Y, Song T, Yu J, Yang Y, Wang Z, Qian G. Adv Funct Mater, 2015, 25: 4796–4802CrossRefGoogle Scholar
  19. 19.
    Wang K, Wang S, Xiao S, Song Q. Adv Opt Mater, 2018, 6: 1800278CrossRefGoogle Scholar
  20. 20.
    Chellappan KV, Erden E, Urey H. Appl Opt, 2010, 49: F79–98CrossRefGoogle Scholar
  21. 21.
    Giuliani G, Norgia M, Donati S, Bosch T. J Opt A-Pure Appl Opt, 2002, 4: S283–S294CrossRefGoogle Scholar
  22. 22.
    Zhang T, Talla S, Gong Z, Karandikar S, Giorno R, Que L. Opt Express, 2010, 18: 18394–18400CrossRefGoogle Scholar
  23. 23.
    Zhu H, Chen X, Jin LM, Wang QJ, Wang F, Yu SF. ACS Nano, 2013, 7: 11420–11426CrossRefGoogle Scholar
  24. 24.
    Zhao JY, Yan YL, Zhao YS, Yao JN. Sci Sin Chim, 2018, 48: 127–142CrossRefGoogle Scholar
  25. 25.
    Fan F, Liu Z, Yin L, Nichols PL, Ning H, Turkdogan S, Ning CZ. Semicond Sci Technol, 2013, 28: 065005CrossRefGoogle Scholar
  26. 26.
    Dong H, Zhang C, Lin X, Zhou Z, Yao J, Zhao YS. Nano Lett, 2017, 17: 91–96CrossRefGoogle Scholar
  27. 27.
    Huang L, Gao Q, Sun LD, Dong H, Shi S, Cai T, Liao Q, Yan CH. Adv Mater, 2018, 30: 1800596CrossRefGoogle Scholar
  28. 28.
    Du W, Zhang S, Shi J, Chen J, Wu Z, Mi Y, Liu Z, Li Y, Sui X, Wang R, Qiu X, Wu T, Xiao Y, Zhang Q, Liu X. ACS Photonics, 2018, 5: 2051–2059CrossRefGoogle Scholar
  29. 29.
    Zhang W, Peng L, Liu J, Tang A, Hu JS, Yao J, Zhao YS. Adv Mater, 2016, 28: 4040–4046CrossRefGoogle Scholar
  30. 30.
    Zhou H, Yuan S, Wang X, Xu T, Wang X, Li H, Zheng W, Fan P, Li Y, Sun L, Pan A. ACS Nano, 2017, 11: 1189–1195CrossRefGoogle Scholar
  31. 31.
    Xu J, Ma L, Guo P, Zhuang X, Zhu X, Hu W, Duan X, Pan A. J Am Chem Soc, 2012, 134: 12394–12397CrossRefGoogle Scholar
  32. 32.
    Gupta A, Dai T, Hamblin MR. Lasers Med Sci, 2014, 29: 257–265CrossRefGoogle Scholar
  33. 33.
    Weissleder R, Ntziachristos V. Nat Med, 2003, 9: 123–128CrossRefGoogle Scholar
  34. 34.
    Song T, Yu J, Cui Y, Yang Y, Qian G. Dalton Trans, 2016, 45: 4218–4223CrossRefGoogle Scholar
  35. 35.
    An J, Geib SJ, Rosi NL. J Am Chem Soc, 2009, 131: 8376–8377CrossRefGoogle Scholar
  36. 36.
    Ma D, Li Y, Li Z. Chem Commun, 2011, 47: 7377–7379CrossRefGoogle Scholar
  37. 37.
    Vietze U, Krauß O, Laeri F, Ihlein G, Schüth F, Limburg B, Abraham M. Phys Rev Lett, 1998, 81: 4628–4631CrossRefGoogle Scholar
  38. 38.
    Anand M, Dharmadhikari AK, Dharmadhikari JA, Mishra A, Mathur D, Krishnamurthy M. Chem Phys Lett, 2003, 372: 263–268CrossRefGoogle Scholar
  39. 39.
    Blum C, Zijlstra N, Lagendijk A, Wubs M, Mosk AP, Subramaniam V, Vos WL. Phys Rev Lett, 2012, 109: 203601CrossRefGoogle Scholar
  40. 40.
    Ta VD, Yang S, Wang Y, Gao Y, He T, Chen R, Demir HV, Sun H. Appl Phys Lett, 2015, 107: 221103CrossRefGoogle Scholar
  41. 41.
    Biskup C, Zimmer T, Kelbauskas L, Hoffmann B, Klöcker N, Becker W, Bergmann A, Benndorf K. Microsc Res Tech, 2007, 70: 442–451CrossRefGoogle Scholar
  42. 42.
    Xu Z, Liao Q, Shi X, Li H, Zhang H, Fu H. J Mater Chem B, 2013, 1: 6035CrossRefGoogle Scholar
  43. 43.
    Gartzia-Rivero L, Bañuelos J, López-Arbeloa I. Int Rev Phys Chem, 2015, 34: 515–556CrossRefGoogle Scholar
  44. 44.
    Cerdán L, Enciso E, Martin V, Bañuelos J, López-Arbeloa I, Costela A, García-Moreno I. Nat Photon, 2012, 6: 621–626CrossRefGoogle Scholar
  45. 45.
    Sirbuly DJ, Law M, Yan H, Yang P. J Phys Chem B, 2005, 109: 15190–15213CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hongjun Li
    • 1
  • Huajun He
    • 1
  • Jiancan Yu
    • 1
  • Yuanjing Cui
    • 1
  • Yu Yang
    • 1
  • Guodong Qian
    • 1
    Email author
  1. 1.State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations