Science China Chemistry

, Volume 62, Issue 6, pp 662–668 | Cite as

Optimal bulk-heterojunction morphology enabled by fibril network strategy for high-performance organic solar cells

  • Tian Xia
  • Yunhao Cai
  • Huiting Fu
  • Yanming SunEmail author


A bicontinuous network formed spontaneously upon film preparation is highly desirable for bulk-heterojunction (BHJ) organic solar cells (OSCs). Many donor-acceptor (D-A) type conjugated polymers can self-assemble into polymer fibrils in the solid state and such fibril-assembly can construct the morphological framework by forming a network structure, inducing the formation of ideal BHJ morphology. Our recent works have revealed that the fibril network strategy (FNS) can control the blend morphology in fullerene, non-fullerene and ternary OSCs. It has been shown that the formation of fibril network can optimize phase separation scale and ensure efficient exciton dissociation and charge carriers transport, thus leading to impressive power conversion efficiencies (PCEs) and high fill factor (FF) values. We believe that FNS will provide a promising approach for the optimization of active layer morphology and the improvement of photovoltaic performance, and further promote the commercialization of OSCs.

organic solar cells bulk heterojunction polymer fibril fibril network strategy morphology 



This work was supported by the National Natural Science Foundation of China (51825301, 21734001).


  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098CrossRefGoogle Scholar
  3. 3.
    Yuan J, Zhang YQ, Zhou LY, Zhang GC, Yip HL, Lau TK, Lu XH, Zhu C, Peng HJ, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li YF, Zou YP. Joule, 2019, 3: 1140–1151CrossRefGoogle Scholar
  4. 4.
    Lee J, Jo SB, Kim M, Kim HG, Shin J, Kim H, Cho K. Adv Mater, 2014, 26: 6706–6714CrossRefGoogle Scholar
  5. 5.
    Mas-Torrent M, Rovira C. Chem Rev, 2011, 111: 4833–4856CrossRefGoogle Scholar
  6. 6.
    Wang S, Kappl M, Liebewirth I, Müller M, Kirchhoff K, Pisula W, Müllen K. Adv Mater, 2012, 24: 417–420CrossRefGoogle Scholar
  7. 7.
    O’Carroll DM, Petoukhoff CE, Kohl J, Yu B, Carter CM, Goodman S. Polym Chem, 2013, 4: 5181CrossRefGoogle Scholar
  8. 8.
    Xue X, Liu T, Meng X, Sun X, Huo L, Ma W, Sun Y. Sci China Chem, 2017, 60: 243–250CrossRefGoogle Scholar
  9. 9.
    Luo C, Kyaw AKK, Perez LA, Patel S, Wang M, Grimm B, Bazan GC, Kramer EJ, Heeger AJ. Nano Lett, 2014, 14: 2764–2771CrossRefGoogle Scholar
  10. 10.
    Zhang X, Bronstein H, Kronemeijer AJ, Smith J, Kim Y, Kline RJ, Richter LJ, Anthopoulos TD, Sirringhaus H, Song K, Heeney M, Zhang W, McCulloch I, DeLongchamp DM. Nat Commun, 2013, 4: 2238CrossRefGoogle Scholar
  11. 11.
    Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y. Adv Mater, 2015, 27: 2938–2944CrossRefGoogle Scholar
  12. 12.
    Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353CrossRefGoogle Scholar
  13. 13.
    Fan Q, Wang Y, Zhang M, Wu B, Guo X, Jiang Y, Li W, Guo B, Ye C, Su W, Fang J, Ou X, Liu F, Wei Z, Sum TC, Russell TP, Li Y. Adv Mater, 2018, 30: 1704546CrossRefGoogle Scholar
  14. 14.
    Fan Q, Zhu Q, Xu Z, Su W, Chen J, Wu J, Guo X, Ma W, Zhang M, Li Y. Nano Energy, 2018, 48: 413–420CrossRefGoogle Scholar
  15. 15.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  16. 16.
    Ye L, Xie Y, Weng K, Ryu HS, Li C, Cai Y, Fu H, Wei D, Woo HY, Tan S, Sun Y. Nano Energy, 2019, 58: 220–226CrossRefGoogle Scholar
  17. 17.
    Sun D, Meng D, Cai Y, Fan B, Li Y, Jiang W, Huo L, Sun Y, Wang Z. J Am Chem Soc, 2015, 137: 11156–11162CrossRefGoogle Scholar
  18. 18.
    Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ. J Am Chem Soc, 2016, 138: 375–380CrossRefGoogle Scholar
  19. 19.
    Meng D, Fu H, Xiao C, Meng X, Winands T, Ma W, Wei W, Fan B, Huo L, Doltsinis NL, Li Y, Sun Y, Wang Z. J Am Chem Soc, 2016, 138: 10184–10190CrossRefGoogle Scholar
  20. 20.
    Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260CrossRefGoogle Scholar
  21. 21.
    Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442–4453CrossRefGoogle Scholar
  22. 22.
    Jen AKY. Sci China Chem, 2017, 60: 435–436CrossRefGoogle Scholar
  23. 23.
    Xie Y, Yang F, Li Y, Uddin MA, Bi P, Fan B, Cai Y, Hao X, Woo HY, Li W, Liu F, Sun Y. Adv Mater, 2018, 30: 1803045CrossRefGoogle Scholar
  24. 24.
    Liu T, Guo Y, Yi Y, Huo L, Xue X, Sun X, Fu H, Xiong W, Meng D, Wang Z, Liu F, Russell TP, Sun Y. Adv Mater, 2016, 28: 10008–10015CrossRefGoogle Scholar
  25. 25.
    Li W, Hendriks KH, Wienk MM, Janssen RAJ. Acc Chem Res, 2016, 49: 78–85CrossRefGoogle Scholar
  26. 26.
    Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176–8183CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ChemistryBeihang UniversityBeijingChina

Personalised recommendations