Advertisement

Efficient p-i-n structured perovskite solar cells employing low-cost and highly reproducible oligomers as hole transporting materials

  • Erpeng Li
  • Wenqin Li
  • Linchang Li
  • Hao Zhang
  • Chao Shen
  • Zihua Wu
  • Weiwei Zhang
  • Xiaojia Xu
  • He Tian
  • Wei-Hong Zhu
  • Yongzhen WuEmail author
Articles
  • 36 Downloads

Abstract

The development of p-i-n structured perovskite solar cells (PSCs) requires more extensive explorations on seeking efficient, low cost and stable hole transporting materials (HTMs). Small molecular HTMs are superior to polymeric ones in terms of synthetic reproducibility as well as purity. However, thin films composed of small molecules are usually labile during the solution-based perovskite deposition. Herein, we propose a molecular engineering strategy of incorporating oligothiophene as conjugation bridge to develop robust oligomer HTMs for p-i-n type PSCs. Upon increasing the oligothiophene chain length from α-bithiophene to α-quaterthiophene and α-hexathiophene, their HOMO energy levels remain unchanged, but their solubility in common organic solvents decreased remarkably, thus greatly enhancing their tolerance to the perovskite deposition. The rational design of oligothiophene chain length can effectively tune their optoelectronic properties as well as thin film stability under polar solvent soaking. The best performance is achieved by an α-quaterthiophene based HTM (QT), showing a high efficiency of 17.69% with fill factor of 0.81, which are comparable to those of a commercially available benchmark polymer HTM (poly[bis (4-phenyl)(2,4-dimethylphenyl) amine], PTAA) based devices fabricated under the same conditions. Our developed oligomer system not only provides the definite molecular structures like small molecule-type HTMs, but also exhibits the excellent film-forming like polymer-type HTMs, thus achieving the well-balanced parameters among solvent tolerance, thin film conductivity, and interfacial charge transfer efficiency, especially building up a platform to develop low cost and reproducible efficient HTMs in p-i-n structured perovskite solar cells.

Keywords

perovskite solar cells p-i-n device structure hole transporting materials oligomers reproducibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21822504, 21706070, 21421004, 21636002), Shanghai Science and Technology Committee (17ZR1407400, 17520750100), China Association of Science and Technology (2017QNRC001), Eastern Scholar (TP2016018), and the Fundamental Research Funds for the Central Universities (WJ1714007).

Supplementary material

11426_2018_9452_MOESM1_ESM.docx (1.7 mb)
Efficient p-i-n Structured Perovskite Solar Cells Employing Low-Cost and Highly Reproducible Oligomers as Hole Transporting Materials

References

  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T. J Am Chem Soc, 2009, 131: 6050–6051CrossRefGoogle Scholar
  2. 2.
    Rong Y, Hu Y, Mei A, Tan H, Saidaminov MI, Seok SI, McGehee MD, Sargent EH, Han H. Science, 2018, 361: eaat8235Google Scholar
  3. 3.
    Liu D, Zhou W, Tang H, Fu P, Ning Z. Sci China Chem, 2018, 61: 1278–1284CrossRefGoogle Scholar
  4. 4.
    Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238CrossRefGoogle Scholar
  5. 5.
    Seo J, Noh JH, Seok SI. Acc Chem Res, 2016, 49: 562–572CrossRefGoogle Scholar
  6. 6.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591CrossRefGoogle Scholar
  7. 7.
    Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726CrossRefGoogle Scholar
  8. 8.
    Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gratzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170Google Scholar
  9. 9.
    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2016, 2: 16177CrossRefGoogle Scholar
  10. 10.
    Zheng G, Zhu C, Ma J, Zhang X, Tang G, Li R, Chen Y, Li L, Hu J, Hong J, Chen Q, Gao X, Zhou H. Nat Commun, 2018, 9: 2793CrossRefGoogle Scholar
  11. 11.
    Jiang X, Yu Z, Lai J, Zhang Y, Lei N, Wang D, Sun L. Sci China Chem, 2017, 60: 423–430CrossRefGoogle Scholar
  12. 12.
    Jeng JY, Chiang YF, Lee MH, Peng SR, Guo TF, Chen P, Wen TC. Adv Mater, 2013, 25: 3727–3732CrossRefGoogle Scholar
  13. 13.
    Meng L, You J, Guo TF, Yang Y. Acc Chem Res, 2016, 49: 155–165CrossRefGoogle Scholar
  14. 14.
    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L. Science, 2015, 350: 944–948CrossRefGoogle Scholar
  15. 15.
    Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 360: 1442–1446CrossRefGoogle Scholar
  16. 16.
    Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L. Nat Energy, 2016, 1: 16148CrossRefGoogle Scholar
  17. 17.
    Yan W, Ye S, Li Y, Sun W, Rao H, Liu Z, Bian Z, Huang C. Adv Energy Mater, 2016, 6: 1600474CrossRefGoogle Scholar
  18. 18.
    Liu X, Huang P, Dong Q, Wang Z, Zhang K, Yu H, Lei M, Zhou Y, Song B, Li Y. Sci China Chem, 2017, 60: 136–143CrossRefGoogle Scholar
  19. 19.
    Wang Q, Chueh CC, Eslamian M, Jen AKY. ACS Appl Mater Interfaces, 2016, 8: 32068–32076CrossRefGoogle Scholar
  20. 20.
    Huang J, Wang KX, Chang JJ, Jiang YY, Xiao QS, Li Y. J Mater Chem A, 2017, 5: 13817–13822CrossRefGoogle Scholar
  21. 21.
    Bi C, Wang Q, Shao Y, Yuan Y, Xiao Z, Huang J. Nat Commun, 2015, 6: 7747CrossRefGoogle Scholar
  22. 22.
    Nie W, Tsai H, Blancon JC, Liu F, Stoumpos CC, Traore B, Kepe-nekian M, Durand O, Katan C, Tretiak S, Crochet J, Ajayan PM, Kanatzidis MG, Even J, Mohite AD. Adv Mater, 2017, 30: 1703879CrossRefGoogle Scholar
  23. 23.
    Hou F, Su Z, Jin F, Yan X, Wang L, Zhao H, Zhu J, Chu B, Li W. Nanoscale, 2015, 7: 9427–9432CrossRefGoogle Scholar
  24. 24.
    Wang Q, Bi C, Huang J. Nano Energy, 2015, 15: 275–280CrossRefGoogle Scholar
  25. 25.
    Tong T, Tan C, Keller T, Li B, Zheng C, Scherf U, Gao D, Huang W. Macromolecules, 2018, 51: 7407–7416CrossRefGoogle Scholar
  26. 26.
    Matsui T, Petrikyte I, Malinauskas T, Domanski K, Daskeviciene M, Steponaitis M, Gratia P, Tress W, Correa-Baena JP, Abate A, Hagfeldt A, Grätzel M, Nazeeruddin MK, Getautis V, Saliba M. Chem-SusChem, 2016, 9: 2567–2571Google Scholar
  27. 27.
    Yang L, Cai F, Yan Y, Li J, Liu D, Pearson AJ, Wang T. Adv Funct Mater, 2017, 27: 1702613CrossRefGoogle Scholar
  28. 28.
    Huang C, Fu W, Li CZ, Zhang Z, Qiu W, Shi M, Heremans P, Jen AKY, Chen H. J Am Chem Soc, 2016, 138: 2528–2531CrossRefGoogle Scholar
  29. 29.
    Shang R, Zhou Z, Nishioka H, Halim H, Furukawa S, Takei I, Ninomiya N, Nakamura E. J Am Chem Soc, 2018, 140: 5018–5022CrossRefGoogle Scholar
  30. 30.
    Magomedov A, Al-Ashouri A, Kasparavičius E, Strazdaite S, Niaura G, Jošt M, Malinauskas T, Albrecht S, Getautis V. Adv Energy Mater, 2018, 8: 1801892CrossRefGoogle Scholar
  31. 31.
    Calió L, Kazim S, Grätzel M, Ahmad S. Angew Chem Int Ed, 2016, 55: 14522–14545CrossRefGoogle Scholar
  32. 32.
    Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y. J Am Chem Soc, 2015, 137: 3886–3893CrossRefGoogle Scholar
  33. 33.
    Hu W, Zhang Z, Cui J, Shen W, Li M, He R. Nanoscale, 2017, 9: 12916–12924CrossRefGoogle Scholar
  34. 34.
    Liu B, Chai Q, Zhang W, Wu W, Tian H, Zhu WH. Green Energy Environ, 2016, 7: 6068–6075Google Scholar
  35. 35.
    Li W, Shi W, Wu Z, Wang J, Wu M, Zhu WH. Green Energy Environ, 2017, 2: 428–435CrossRefGoogle Scholar
  36. 36.
    Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C. Nano Res, 2015, 8: 2474–2480CrossRefGoogle Scholar
  37. 37.
    Paek S, Zimmermann I, Gao P, Gratia P, Rakstys K, Grancini G, Nazeeruddin MK, Rub MA, Kosa SA, Alamry KA, Asiri AM. Chem Sci, 2016, 7: 6068–6075CrossRefGoogle Scholar
  38. 38.
    Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C. Nano Energy, 2015, 16: 428–437CrossRefGoogle Scholar
  39. 39.
    Xu B, Gabrielsson E, Safdari M, Cheng M, Hua Y, Tian H, Gardner JM, Kloo L, Sun L. Adv Energy Mater, 2015, 5: 1402340CrossRefGoogle Scholar
  40. 40.
    Liu F, Zhu J, Wei J, Li Y, Lv M, Yang S, Zhang B, Yao J, Dai S. Appl Phys Lett, 2014, 104: 253508CrossRefGoogle Scholar
  41. 41.
    Kim HD, Ohkita H. Sol RRL, 2017, 1: 1700027CrossRefGoogle Scholar
  42. 42.
    Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Energy Environ Sci, 2014, 7: 2619–2623CrossRefGoogle Scholar
  43. 43.
    Stoumpos CC, Malliakas CD, Kanatzidis MG. Inorg Chem, 2013, 52: 9019–9038CrossRefGoogle Scholar
  44. 44.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP, Leijtens T, Herz LM, Petrozza A, Snaith HJ. Science, 2013, 342: 341–344CrossRefGoogle Scholar
  45. 45.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522CrossRefGoogle Scholar
  46. 46.
    Zhang W, Smith J, Hamilton R, Heeney M, Kirkpatrick J, Song K, Watkins SE, Anthopoulos T, McCulloch I. J Am Chem Soc, 2009, 131: 10814–10815CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Erpeng Li
    • 1
  • Wenqin Li
    • 2
  • Linchang Li
    • 1
  • Hao Zhang
    • 1
  • Chao Shen
    • 1
  • Zihua Wu
    • 2
  • Weiwei Zhang
    • 1
  • Xiaojia Xu
    • 1
  • He Tian
    • 1
  • Wei-Hong Zhu
    • 1
  • Yongzhen Wu
    • 1
    Email author
  1. 1.Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Environmental and Materials Engineering, College of EngineeringShanghai Polytechnic UniversityShanghaiChina

Personalised recommendations