One-dimensional π-d conjugated coordination polymers: synthesis and their improved memory performance

  • Xue-Feng Cheng
  • Jie Li
  • Xiang Hou
  • Jin Zhou
  • Jing-Hui HeEmail author
  • Hua Li
  • Qing-Feng Xu
  • Na-Jun Li
  • Dong-Yun Chen
  • Jian-Mei LuEmail author


Multilevel resistance random access memories (RRAMs) are intensively studied due to their potential applications in high density information storage. However, the low ternary device yields and high threshold voltages based on current materials cannot meet the requirement for applications. Improvement via material innovation remains desirable and challenging. Herein, five one-dimensional conjugated coordination polymers were synthesized via the reaction between metal ions (Zn2+, Cu2+, Ni2+, Pt2+ and Pd2+) and 2,5-diaminobenzene-1,4-dithiol (DABDT) and fabricated into RRAM devices. The as-fabricated ternary memories have relatively low threshold voltages (Vth1: −1 to −1.4 V, Vth2: −1.8 to −2.2 V). Their ternary device yields were improved from 24% to 56%. The first and the second resistance switches are interpreted by the space charge limited current (SCLC) and grain boundary depletion limited current (GBLC) modes, respectively. The Pd-DABDT, which is of planar structure, smaller band gap and better crystallinity than others, shows the best performance among these five polymers. Our work paves a simple and efficient way to optimize the performance of ternary RRAM devices employing one-dimensional hybrid materials.


one-dimensional coordination polymer resistive random access memory ternary device yield low threshold voltages d-π conjugation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21603158, 21336005), the Major Research Project of Natural Scientific Research Foundation of the Higher Education Institutions in Jiangsu Province (15KJA150008, 17KJA150010), Suzhou Science and Technology Bureau Project (SYG201524), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

11426_2018_9447_MOESM1_ESM.pdf (3 mb)
One-dimensional π-d Conjugated Coordination Polymers: Synthesis and Its Improved Memory Performance


  1. 1.
    Cheng XF, Hou X, Zhou J, Gao BJ, He JH, Li H, Xu QF, Li NJ, Chen DY, Lu JM. Small, 2018, 14: 1703667Google Scholar
  2. 2.
    Gu C, Lee JS. ACS Nano, 2016, 10: 5413–5418CrossRefGoogle Scholar
  3. 3.
    Liu Y, Wang H, Shi W, Zhang W, Yu J, Chandran BK, Cui C, Zhu B, Liu Z, Li B, Xu C, Xu Z, Li S, Huang W, Huo F, Chen X. Angew Chem Int Ed, 2016, 55: 8884–8888CrossRefGoogle Scholar
  4. 4.
    Ma Y, Cao X, Li G, Wen Y, Yang Y, Wang J, Du S, Yang L, Gao H, Song Y. Adv Funct Mater, 2010, 20: 803–810CrossRefGoogle Scholar
  5. 5.
    Ielmini D. Semicond Sci Technol, 2016, 31: 063002CrossRefGoogle Scholar
  6. 6.
    Li H, Xu Q, Li N, Sun R, Ge J, Lu J, Gu H, Yan F. J Am Chem Soc, 2010, 132: 5542–5543CrossRefGoogle Scholar
  7. 7.
    Li Y, Chen L, Ai Y, Hong EYH, Chan AKW, Yam VWW. J Am Chem Soc, 2017, 139: 13858–13866CrossRefGoogle Scholar
  8. 8.
    Liu Y, Liu Z, Zhu B, Yu J, He K, Leow WR, Wang M, Chandran BK, Qi D, Wang H, Chen G, Xu C, Chen X. Adv Mater, 2017, 29: 1701780Google Scholar
  9. 9.
    Li Y, Zhang C, Gu P, Wang Z, Li Z, Li H, Lu J, Zhang Q. Chem Eur J, 2018, 24: 7845–7851CrossRefGoogle Scholar
  10. 10.
    Wang C, Hu B, Wang J, Gao J, Li G, Xiong WW, Zou B, Suzuki M, Aratani N, Yamada H, Huo F, Lee PS, Zhang Q. Chem Asian J, 2015, 10: 116–119CrossRefGoogle Scholar
  11. 11.
    Gu PY, Gao J, Lu CJ, Chen W, Wang C, Li G, Zhou F, Xu QF, Lu JM, Zhang Q. Mater Horiz, 2014, 1: 446–451CrossRefGoogle Scholar
  12. 12.
    Li Y, Wang Z, Zhang C, Gu P, Chen W, Li H, Lu J, Zhang Q. ACS Appl Mater Interfaces, 2018, 10: 15971–15979CrossRefGoogle Scholar
  13. 13.
    Chen H, Wu L, Xiao X, Wang H, Jiang J, Wang L, Xu Q, Lu J. Sci China Chem, 2017, 60: 237–242CrossRefGoogle Scholar
  14. 14.
    Cheng XF, Xia SG, Hou X, Xiao X, He JH, Ren ZG, Xu QF, Li H, Li NJ, Chen DY, Lu JM. Adv Mater Technol, 2017, 2: 1700202Google Scholar
  15. 15.
    Cheng XF, Hou X, Qian WH, He JH, Xu QF, Li H, Li NJ, Chen DY, Lu JM. ACS Appl Mater Interfaces, 2017, 9: 27847–27852CrossRefGoogle Scholar
  16. 16.
    Hou X, Cheng XF, Xiao X, He JH, Xu QF, Li H, Li NJ, Chen DY, Lu JM. Chem Asian J, 2017, 12: 2278–2283CrossRefGoogle Scholar
  17. 17.
    Hou X, Xiao X, Zhou QH, Cheng XF, He JH, Xu QF, Li H, Li NJ, Chen DY, Lu JM. Chem Sci, 2017, 8: 2344–2351CrossRefGoogle Scholar
  18. 18.
    Liu SJ, Wang P, Zhao Q, Yang HY, Wong J, Sun HB, Dong XC, Lin WP, Huang W. Adv Mater, 2012, 24: 2901–2905CrossRefGoogle Scholar
  19. 19.
    Zhang Q, He J, Zhuang H, Li H, Li N, Xu Q, Chen D, Lu J. Adv Funct Mater, 2016, 26: 146–154CrossRefGoogle Scholar
  20. 20.
    Hong EYH, Poon CT, Yam VWW. J Am Chem Soc, 2016, 138: 6368–6371CrossRefGoogle Scholar
  21. 21.
    Song S, Ko YG, Lee H, Wi D, Ree BJ, Li Y, Michinobu T, Ree M. NPG Asia Mater, 2015, 7: e228Google Scholar
  22. 22.
    Cheng XF, Shi EB, Hou X, Shu J, He JH, Li H, Xu QF, Li NJ, Chen DY, Lu JM. Adv Electron Mater, 2017, 3: 1700107Google Scholar
  23. 23.
    Bin Z, Li J, Wang L, Duan L. Energy Environ Sci, 2016, 9: 3424–3428CrossRefGoogle Scholar
  24. 24.
    Li Y, Li H, Chen H, Wan Y, Li N, Xu Q, He J, Chen D, Wang L, Lu J. Adv Funct Mater, 2015, 25: 4246–4254CrossRefGoogle Scholar
  25. 25.
    Lu G, Tang H, Huan Y, Li S, Li L, Wang Y, Yang X. Adv Funct Mater, 2010, 20: 1714–1720CrossRefGoogle Scholar
  26. 26.
    Shirota Y. J Mater Chem, 2000, 10: 1–25CrossRefGoogle Scholar
  27. 27.
    Shirota Y. J Mater Chem, 2005, 15: 75–93CrossRefGoogle Scholar
  28. 28.
    Sivula K, Luscombe CK, Thompson BC, Fréchet JMJ. J Am Chem Soc, 2006, 128: 13988–13989CrossRefGoogle Scholar
  29. 29.
    Geng H, Peng Q, Wang L, Li H, Liao Y, Ma Z, Shuai Z. Adv Mater, 2012, 24: 3568–3572CrossRefGoogle Scholar
  30. 30.
    Marcus RA. J Chem Phys, 1956, 24: 979–989CrossRefGoogle Scholar
  31. 31.
    Marcus RA. J Chem Phys, 1956, 24: 966–978CrossRefGoogle Scholar
  32. 32.
    Hu X, Yu D. RSC Adv, 2012, 2: 6570–6575CrossRefGoogle Scholar
  33. 33.
    Aasmundtveit KE, Samuelsen EJ, Guldstein M, Steinsland C, Flornes O, Fagermo C, Seeberg TM, Pettersson LAA, Inganäs O, Feidenhans’l R, Ferrer S. Macromolecules, 2000, 33: 3120–3127CrossRefGoogle Scholar
  34. 34.
    Ungár T. Scripta Mater, 2004, 51: 777–781CrossRefGoogle Scholar
  35. 35.
    Zhokhavets U, Erb T, Gobsch G, Al-Ibrahim M, Ambacher O. Chem Phys Lett, 2006, 418: 347–350CrossRefGoogle Scholar
  36. 36.
    Cheng XF, Shi EB, Hou X, Xia SG, He JH, Xu QF, Li H, Li NJ, Chen DY, Lu JM. Chem Asian J, 2017, 12: 45–51CrossRefGoogle Scholar
  37. 37.
    Gu PY, Zhou F, Gao J, Li G, Wang C, Xu QF, Zhang Q, Lu JM. J Am Chem Soc, 2013, 135: 14086–14089CrossRefGoogle Scholar
  38. 38.
    Su Z, Zhuang H, Liu H, Li H, Xu Q, Lu J, Wang L. J Mater Chem C, 2014, 2: 5673–5680CrossRefGoogle Scholar
  39. 39.
    Zhang Q, Zhuang H, He J, Xia S, Li H, Li N, Xu Q, Lu J. J Mater Chem C, 2015, 3: 6778–6785CrossRefGoogle Scholar
  40. 40.
    Rose A. Phys Rev, 1955, 97: 1538–1544CrossRefGoogle Scholar
  41. 41.
    Lampert MA. Phys Rev, 1956, 103: 1648–1656CrossRefGoogle Scholar
  42. 42.
    Mark P, Helfrich W. J Appl Phys, 1962, 33: 205–215CrossRefGoogle Scholar
  43. 43.
    Xia Y, He W, Chen L, Meng X, Liu Z. Appl Phys Lett, 2007, 90: 022907Google Scholar
  44. 44.
    Dimos D, Chaudhari P, Mannhart J, Legoues FK. Phys Rev Lett, 1988, 61: 219–222CrossRefGoogle Scholar
  45. 45.
    Hu H, Krupanidhi SB. J Mater Res, 1994, 9: 1484–1498CrossRefGoogle Scholar
  46. 46.
    Wang G, Yang Y, Lee JH, Abramova V, Fei H, Ruan G, Thomas EL, Tour JM. Nano Lett, 2014, 14: 4694–4699CrossRefGoogle Scholar
  47. 47.
    Yang JK, Kim WS, Park HH. Thin Solid Films, 2000, 377‐378: 739–744CrossRefGoogle Scholar
  48. 48.
    Chiu FC. Adv Mater Sci Eng, 2014, 2014: 578168Google Scholar
  49. 49.
    Li Y, Li H, He J, Xu Q, Li N, Chen D, Lu J. Chem Asian J, 2016, 11: 906–914CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xue-Feng Cheng
    • 1
  • Jie Li
    • 2
  • Xiang Hou
    • 1
  • Jin Zhou
    • 1
  • Jing-Hui He
    • 1
    Email author
  • Hua Li
    • 1
  • Qing-Feng Xu
    • 1
  • Na-Jun Li
    • 1
  • Dong-Yun Chen
    • 1
  • Jian-Mei Lu
    • 1
    Email author
  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  2. 2.Shanghai Institute of Measurement and Testing TechnologyShanghaiChina

Personalised recommendations