Advertisement

Science China Chemistry

, Volume 62, Issue 4, pp 460–464 | Cite as

Metal-free C3-alkoxycarbonylation of quinoxalin-2(1H)-ones with carbazates as ecofriendly ester sources

  • Long-Yong Xie
  • Sha Peng
  • Tai-Gang Fan
  • Yan-Fang Liu
  • Meng Sun
  • Li-Lin Jiang
  • Xing-Xing Wang
  • Zhong Cao
  • Wei-Min HeEmail author
Articles

Abstract

Quinoxaline-3-carboxylates and analogues are prevalent key structural motifs in bioactive natural products and synthetic drugs. However, the practical protocol for preparation of these motifs from simple raw materials under mild conditions remains rare. In this article, we report a facile protocol for the efficient preparation of various quinoxaline-3-carbonyl compounds (30 examples, 63%–92%) through oxidation coupling of quinoxalin-2(1H)-ones with readily available carbazates (or acyl hydrazines) in the presence of K2S2O8 as an oxidant in metal- and base-free conditions. When tert-butyl carbazate was used as the coupling reagent, the decarboxylation product 3-(tert-butyl)-1-methylquinoxalin-2(1H)-one was obtained. The application of this process into a gram-scale synthesis can be easily accomplished. Mechanistic investigations reveal that the functionalization of quinoxalin-2 (1H)-ones via a free-radical pathway.

Keywords

quinoxalin-2(1H)-ones alkoxycarbonylation carbazates synthetic methods metal-free 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Hunan Provincial Natural Science Foundation of China (2019JJ20008) and the Construct Program of Applied Characteristic Discipline in Hunan University of Science and Engineering.

Supplementary material

11426_2018_9446_MOESM1_ESM.docx (2.6 mb)
Metal-free C3-Alkoxycarbonylation of Quinoxalin-2(1H)-ones with Carbazates as Ecofriendly Ester Sources

References

  1. 1 (a).
    Mamedov VA, Zhukova NA. Progress in Quinoxaline Synthesis (Part 1), in: Progress in Heterocyclic Chemistry. Vol. 24. Amsterdam: Elsevier Ltd. 2012. 55–87Google Scholar
  2. 1 (b).
    Mamedov VA, Zhukova NA. Progress in Quinoxaline Synthesis (Part 2), in: Progress in Heterocyclic Chemistry. Vol. 25. Amsterdam: Elsevier Ltd., 2013. 1–45Google Scholar
  3. 1 (c).
    Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev Med Chem, 2018, 18: 392–413CrossRefGoogle Scholar
  4. 1 (d).
    Liang Q, Zhang Y, Zeng M, Guan L, Xiao Y, Xiao F. Toxicol Res, 2018, 7: 521–528CrossRefGoogle Scholar
  5. 2 (a).
    Wei W, Wang L, Yue H, Bao P, Liu W, Hu C, Yang D, Wang H. ACS Sustain Chem Eng, 2018, 6: 17252–17257CrossRefGoogle Scholar
  6. 2 (b).
    Yuan J, Fu J, Yin J, Dong Z, Xiao Y, Mao P, Qu L. Org Chem Front, 2018, 5: 2820–2828CrossRefGoogle Scholar
  7. 2 (c).
    Fu J, Yuan J, Zhang Y, Xiao Y, Mao P, Diao X, Qu L. Org Chem Front, 2018, 5: 3382–3390CrossRefGoogle Scholar
  8. 2 (d).
    Yang L, Gao P, Duan XH, Gu YR, Guo LN. Org Lett, 2018, 20: 1034–1037CrossRefGoogle Scholar
  9. 3 (a).
    Carrër A, Brion JD, Messaoudi S, Alami M. Org Lett, 2013, 15: 5606–5609CrossRefGoogle Scholar
  10. 3 (b).
    Carrër A, Brion JD, Alami M, Messaoudi S. Adv Synth Catal, 2014, 356: 3821–3830CrossRefGoogle Scholar
  11. 3 (c).
    Zhang X, Xu B, Xu MH. Org Chem Front, 2016, 3: 944–948CrossRefGoogle Scholar
  12. 3 (d).
    Yuan JW, Yang LR, Yin QY, Mao P, Qu LB. RSC Adv, 2016, 6: 35936–35944CrossRefGoogle Scholar
  13. 3 (e).
    Yuan J, Liu S, Qu L. Adv Synth Catal, 2017, 359: 4197–4207CrossRefGoogle Scholar
  14. 3 (f).
    Paul S, Ha JH, Park GE, Lee YR. Adv Synth Catal, 2017, 359: 1515–1521CrossRefGoogle Scholar
  15. 3 (g).
    Ramesh B, Reddy CR, Kumar GR, Reddy BVS. Tetrahedron Lett, 2018, 59: 628–631CrossRefGoogle Scholar
  16. 3 (h).
    Yin K, Zhang R. Synlett, 2018, 14: 597–602Google Scholar
  17. 3 (i).
    Toonchue S, Sumunnee L, Phomphrai K, Yotphan S. Org Chem Front, 2018, 5: 1928–1932CrossRefGoogle Scholar
  18. 3 (j).
    Jung HI, Lee JH, Kim DY. Bull Korean Chem Soc, 2018, 39: 1003–1006CrossRefGoogle Scholar
  19. 4 (a).
    Zeng X, Liu C, Wang X, Zhang J, Wang X, Hu Y. Org Biomol Chem, 2017, 15: 8929–8935CrossRefGoogle Scholar
  20. 4 (b).
    Yuan JW, Fu JH, Liu SN, Xiao YM, Mao P, Qu LB. Org Biomol Chem, 2018, 16: 3203–3212CrossRefGoogle Scholar
  21. 5 (a).
    Li Y, Gao M, Wang L, Cui X. Org Biomol Chem, 2016, 14: 8428–8432CrossRefGoogle Scholar
  22. 5 (b).
    Gupta A, Deshmukh MS, Jain N. J Org Chem, 2017, 82: 4784–4792CrossRefGoogle Scholar
  23. 5 (c).
    Li KJ, Xu K, Liu YG, Zeng CC, Sun BG. Adv Synth Catal, 2018, 86Google Scholar
  24. 5 (d).
    Sumunnee L, Pimpasri C, Noikham M, Yotphan S. Org Biomol Chem, 2018, 16: 2697–2704CrossRefGoogle Scholar
  25. 5 (e).
    Muhammad MH, Chen XL, Yu B, Qu LB, Zhao YF. Pure Appl Chem, 2019, 91: 33–41CrossRefGoogle Scholar
  26. 5 (f).
    Wei W, Wang L, Bao P, Shao Y, Yue H, Yang D, Yang X, Zhao X, Wang H. Org Lett, 2018, 20: 7125–7130CrossRefGoogle Scholar
  27. 5 (g).
    Yuan J, Zhu J, Fu J, Yang L, Xiao Y, Mao P, Du X, Qu L. Org Chem Front, 2019, 97Google Scholar
  28. 6.
    Yang Q, Zhang Y, Sun Q, Shang K, Zhang HY, Zhao J. Adv Synth Catal, 2018, 360: 4509–4514CrossRefGoogle Scholar
  29. 7.
    Hu L, Yuan J, Fu J, Zhang T, Gao L, Xiao Y, Mao P, Qu L. Eur J Org Chem, 2018, 2018(30): 4113–4120CrossRefGoogle Scholar
  30. 8.
    Wang L, Zhang Y, Li F, Hao X, Zhang HY, Zhao J. Adv Synth Catal, 2018, 360: 3969–3977CrossRefGoogle Scholar
  31. 9 (a).
    Gao M, Li Y, Xie L, Chauvin R, Cui X. Chem Commun, 2016, 52: 2846–2849CrossRefGoogle Scholar
  32. 9 (b).
    Kim Y, Kim DY. Tetrahedron Lett, 2018, 59: 2443–2446CrossRefGoogle Scholar
  33. 9 (c).
    Yuan T, Pi C, You C, Cui X, Du S, Wan T, Wu Y. Chem Commun, 2019, 55: 163–166CrossRefGoogle Scholar
  34. 10 (a).
    Miyamaru S, Umezu K, Ito A, Shimizu M. Eur J Org Chem, 2015, 2015: 3327–3337CrossRefGoogle Scholar
  35. 10 (b).
    Briguglio I, Piras S, Corona P, Pirisi MA, Burrai L, Boatto G, Gavini E, Rassu G. J Heterocyclic Chem, 2016, 53: 1721–1737CrossRefGoogle Scholar
  36. 10 (c).
    Zou N, Jiao JW, Feng Y, Pan CX, Liang C, Su GF, Mo DL. Org Lett 2019, 21: 481–485Google Scholar
  37. 11.
    Harayama T, Tezuka Y, Taga T, Yoneda F. J Chem Soc Perkin Trans 1, 1987, 0: 75CrossRefGoogle Scholar
  38. 12.
    Wróbel Z, Stachowska K, Kwast A, Gościk A, Królikiewicz M, Pawłowski R, Turska I. Helv Chim Acta, 2013, 96: 956–968CrossRefGoogle Scholar
  39. 13.
    Yan J, Xu Y, Zhuang F, Tian J, Zhang G. Mol Divers, 2016, 20: 567–573CrossRefGoogle Scholar
  40. 14 (a).
    Li D, Ma H, Yu W. Adv Synth Catal, 2015, 357: 3696–3702CrossRefGoogle Scholar
  41. 14 (b).
    Li D, Li Y, Yu W. Synthesis, 2017, 49: 4283–4291CrossRefGoogle Scholar
  42. 15 (a).
    Yan H, Zhu C. Sci China Chem, 2017, 60: 214–222CrossRefGoogle Scholar
  43. 15 (b).
    Wan X, Sun K, Zhang G. Sci China Chem, 2017, 60: 353–357CrossRefGoogle Scholar
  44. 15 (c).
    Sun K, Lv Y, Shi Z, Fu F, Zhang C, Zhang Z. Sci China Chem, 2017, 60: 730–733CrossRefGoogle Scholar
  45. 15 (d).
    Sun K, Shi Z, Liu Z, Luan B, Zhu J, Xue Y. Org Lett, 2018, 20: 6687–6690CrossRefGoogle Scholar
  46. 15 (e).
    Liu KJ, Jiang S, Lu LH, Tang LL, Tang SS, Tang HS, Tang Z, He WM, Xu X. Green Chem, 2018, 20: 3038–3043CrossRefGoogle Scholar
  47. 15 (f).
    Fan J, Wang PM, Wang JN, Zhao X, Liu ZW, Wei JF, Shi XY. Sci China Chem, 2018, 61: 153–158CrossRefGoogle Scholar
  48. 15 (g).
    Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci China Chem, 2018, 61: 294–299CrossRefGoogle Scholar
  49. 15 (h).
    Zhang D, Huang Z, Lei A. Sci China Chem, 2018, 61: 1274–1277CrossRefGoogle Scholar
  50. 15 (i).
    Hao S, Li LX, Dong DQ, Wang ZL, Yu XY. Tetrahedron Lett, 2018, 59: 4073–4075CrossRefGoogle Scholar
  51. 15 (j).
    Wang J, Li B, Liu LC, Jiang C, He T, He W. Sci China Chem, 2018, 61: 1594–1599CrossRefGoogle Scholar
  52. 15 (k).
    Sun K, Li SJ, Chen XL, Liu Y, Huang XQ, Wei DH, Qu LB, Zhao YF, Yu B. Chem Commun, 2019, 49Google Scholar
  53. 16 (a).
    Gao Y, Lu W, Liu P, Sun P. J Org Chem, 2016, 81: 2482–2487CrossRefGoogle Scholar
  54. 16 (b).
    Li X, Fang X, Zhuang S, Liu P, Sun P. Org Lett, 2017, 19: 3580–3583CrossRefGoogle Scholar
  55. 16 (c).
    Pan C, Han J, Zhang H, Zhu C. J Org Chem, 2014, 79: 5374–5378CrossRefGoogle Scholar
  56. 16 (d).
    Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J Org Chem, 2014, 79: 446–451CrossRefGoogle Scholar
  57. 16 (e).
    Li X, Fang M, Hu P, Hong G, Tang Y, Xu X. Adv Synth Catal, 2014, 356: 2103–2106CrossRefGoogle Scholar
  58. 17 (a).
    He M, Han B. Sci China Chem, 2017, 60: 837–838CrossRefGoogle Scholar
  59. 17 (b).
    Li X, He X, Liu X, He LN. Sci China Chem, 2017, 60: 841–852CrossRefGoogle Scholar
  60. 17 (c).
    Han B. Acta Phys-Chim Sin, 2018, 34: 837–837Google Scholar
  61. 18 (a).
    Wu C, Lu LH, Peng AZ, Jia GK, Peng C, Cao Z, Tang Z, He WM, Xu X. Green Chem, 2018, 20: 3683–3688CrossRefGoogle Scholar
  62. 18 (b).
    Wu C, Wang Z, Hu Z, Zeng F, Zhang XY, Cao Z, Tang Z, He WM, Xu XH. Org Biomol Chem, 2018, 16: 3177–3180CrossRefGoogle Scholar
  63. 18 (c).
    Wang Z, Yang L, Liu H, Bao W, Tan Y, Wang M, Tang Z, He W. Chin J Org Chem, 2018, 38: 2639–2647CrossRefGoogle Scholar
  64. 18 (d).
    Bao WH, Wu C, Wang JT, Xia W, Chen P, Tang Z, Xu X, He WM. Org Biomol Chem, 2018, 16: 8403–8407CrossRefGoogle Scholar
  65. 18 (e).
    Lu LH, Zhou SJ, He WB, Xia W, Chen P, Yu X, Xu X, He WM. Org Biomol Chem, 2018, 16: 9064–9068CrossRefGoogle Scholar
  66. 18 (f).
    Lu LH, Zhou SJ, Sun M, Chen JL, Xia W, Yu X, Xu X, He WM. ACS Sustain Chem Eng, 2019, 7: 1574–1579CrossRefGoogle Scholar
  67. 18 (g).
    Cao Z, Li WF, Liu C, Peng YY, Huang Y, Xiao ZL. Chin J Anal Chem, 2019, 47: 229–236Google Scholar
  68. 18 (h).
    Wu C, Xiao HJ, Wang SW, Tang MS, Tang ZL, Xia W, Li WF, Cao Z, He WM. ACS Sustain Chem Eng, 2019, 7: 2169–2175CrossRefGoogle Scholar
  69. 19 (a).
    Xie LY, Li YJ, Qu J, Duan Y, Hu J, Liu KJ, Cao Z, He WM. Green Chem, 2017, 19: 5642–5646CrossRefGoogle Scholar
  70. 19 (b).
    Xie LY, Duan Y, Lu LH, Li YJ, Peng S, Wu C, Liu KJ, Wang Z, He WM. ACS Sustain Chem Eng, 2017, 5: 10407–10412CrossRefGoogle Scholar
  71. 19 (c).
    Wu C, Wang J, Zhang XY, Jia GK, Cao Z, Tang Z, Yu X, Xu X, He WM. Org Biomol Chem, 2018, 16: 5050–5054CrossRefGoogle Scholar
  72. 19 (d).
    Xie LY, Peng S, Liu F, Chen GR, Xia W, Yu X, Li WF, Cao Z, He WM. Org Chem Front, 2018, 5: 2604–2609CrossRefGoogle Scholar
  73. 19 (e).
    Xie LY, Peng S, Liu F, Yi JY, Wang M, Tang Z, Xu X, He WM. Adv Synth Catal, 2018, 360: 4259–4264CrossRefGoogle Scholar
  74. 19 (f).
    Xie LY, Peng S, Lu LH, Hu J, Bao WH, Zeng F, Tang Z, Xu X, He WM. ACS Sustain Chem Eng, 2018, 6: 7989–7994CrossRefGoogle Scholar
  75. 19 (g).
    Xie LY, Peng S, Tan JX, Sun RX, Yu X, Dai NN, Tang ZL, Xu X, He WM. ACS Sustain Chem Eng, 2018, 6: 16976–16981CrossRefGoogle Scholar
  76. 19 (h).
    Li GH, Dong DQ, Yang Y, Yu XY, Wang ZL. Adv Synth Catal, 2019, 361: 832–835Google Scholar
  77. 19 (i).
    Ren D, Liu B, Li X, Koniarz S, Pawlicki M, Chmielewski PJ. Org Chem Front, 2019, https://doi.org/10.1039/C9QO00024KGoogle Scholar
  78. 19 (j).
    Xie LY, Peng S, Jiang LL, Peng X, Xia W, Yu X, Wang XX, Cao Z, He WM. Org Chem Front, 2019, 6: 167–171CrossRefGoogle Scholar
  79. 20.
    Liu J, Yang D, Yang X, Nie M, Wu G, Wang Z, Li W, Liu Y, Gong P. Bioorg Med Chem, 2017, 25: 4475–4486CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Long-Yong Xie
    • 1
  • Sha Peng
    • 1
  • Tai-Gang Fan
    • 1
  • Yan-Fang Liu
    • 1
  • Meng Sun
    • 2
  • Li-Lin Jiang
    • 1
  • Xing-Xing Wang
    • 3
  • Zhong Cao
    • 3
  • Wei-Min He
    • 1
    Email author
  1. 1.Department of ChemistryHunan University of Science and EngineeringYongzhouChina
  2. 2.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of EducationHunan University of Science and TechnologyXiangtanChina
  3. 3.Hunan Provincial Key Laboratory of Materials Protection for Electric Power and TransportationChangsha University of Science and TechnologyChangshaChina

Personalised recommendations