Advertisement

Identifying the general trend of activity of non-stoichiometric metal oxide phases for CO oxidation on Pd(111)

  • Ziyun Wang
  • P. HuEmail author
Articles
  • 34 Downloads

Abstract

Oxidation state changes under reaction conditions are very common in heterogeneous catalysis. However, due to the limitation of experiment and computational methods, the relation between oxidation state and catalytic activity is not clear. Herein, we obtain the most stable structures of palladium oxide films with different oxidation states on palladium metal surfaces using density functional theory calculations and a state-of-the-art optimization method, namely the particle swarm optimization. These structures clearly show the process of palladium oxide film formation on metallic surfaces. Using CO oxidation as a model reaction, we find that the activities increase first and then decrease with the increase of oxidation states, peaking at Pd4O3. Our findings offer an understanding of the phase transformation and the activity of non-stoichiometric phases.

DFT non-stoichiometric oxide CO oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge UK’s national high performance computing service ARCHER (for which access was obtained via the UKCP consortium) for computing time. This work was supported by the National Natural Science Foundation of China (21333003) and Queens University Belfast for a Ph.D. studentship.

Supplementary material

11426_2018_9445_MOESM1_ESM.pdf (572 kb)
Supplementary material, approximately 228 KB.

References

  1. 1.
    Reuter K, Scheffler M. Phys Rev B, 2001, 65: 035406CrossRefGoogle Scholar
  2. 2.
    Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P. J Catal, 2012, 296: 110–119CrossRefGoogle Scholar
  3. 3.
    Tao FF, Shan JJ, Nguyen L, Wang Z, Zhang S, Zhang L, Wu Z, Huang W, Zeng S, Hu P. Nat Commun, 2015, 6: 7798CrossRefGoogle Scholar
  4. 4.
    Hu W, Lan J, Guo Y, Cao XM, Hu P. ACS Catal, 2016, 6: 5508–5519CrossRefGoogle Scholar
  5. 5.
    Yang M, Yuan H, Wang H, Hu P. Sci China Chem, 2018, 61: 457–467CrossRefGoogle Scholar
  6. 6.
    Wang Z, Liu X, Rooney DW, Hu P. Surf Sci, 2015, 640: 181–189CrossRefGoogle Scholar
  7. 7.
    Tyo EC, Yin C, Di Vece M, Qian Q, Kwon G, Lee S, Lee B, DeBartolo JE, Seifert S, Winans RE, Si R, Ricks B, Goergen S, Rutter M, Zugic B, Flytzani-Stephanopoulos M, Wang ZW, Palmer RE, Neurock M, Vajda S. ACS Catal, 2012, 2012: 2409–2423CrossRefGoogle Scholar
  8. 8.
    Wang J, Wang H, Hu P. Sci China Chem, 2018, 61: 336–343CrossRefGoogle Scholar
  9. 9.
    Duchesne PN, Chen G, Zhao X, Zheng N, Zhang P. J Phys Chem C, 2014, 118: 28861–28867CrossRefGoogle Scholar
  10. 10.
    Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F. Chem Rev, 2015, 115: 9869–9921CrossRefGoogle Scholar
  11. 11.
    Over H, Muhler M. Prog Surf Sci, 2003, 72: 3–17CrossRefGoogle Scholar
  12. 12.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G. Science, 2000, 287: 1474–1476CrossRefGoogle Scholar
  13. 13.
    Soon A, Todorova M, Delley B, Stampfl C. Phys Rev B, 2006, 73: 165424CrossRefGoogle Scholar
  14. 14.
    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P. Phys Rev Lett, 2002, 88: 246103CrossRefGoogle Scholar
  15. 15.
    Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile SM, Steinfeld A. Science, 2010, 330: 1797–1801CrossRefGoogle Scholar
  16. 16.
    Zhang S, Shan J, Zhu Y, Frenkel AI, Patlolla A, Huang W, Yoon SJ, Wang L, Yoshida H, Takeda S, Tao FF. J Am Chem Soc, 2013, 135: 8283–8293CrossRefGoogle Scholar
  17. 17.
    Wang JB, Tsai DH, Huang TJ. J Catal, 2002, 208: 370–380CrossRefGoogle Scholar
  18. 18.
    Wang Z, Cao XM, Zhu J, Hu P. J Catal, 2014, 311: 469–480CrossRefGoogle Scholar
  19. 19.
    Falsig H, Hvolbaek B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK. Angew Chem Int Ed, 2008, 47: 4835–4839CrossRefGoogle Scholar
  20. 20.
    Chen Y, Vlachos DG. Ind Eng Chem Res, 2012, 51: 12244–12252Google Scholar
  21. 21.
    Gong XQ, Raval R, Hu P. Phys Rev Lett, 2004, 93: 106104CrossRefGoogle Scholar
  22. 22.
    Hong S, Karim A, Rahman TS, Jacobi K, Ertl G. J Catal, 2010, 276: 371–381CrossRefGoogle Scholar
  23. 23.
    Weaver JF, Zhang F, Pan L, Li T, Asthagiri A. Acc Chem Res, 2015, 48: 1515–1523CrossRefGoogle Scholar
  24. 24.
    Zhang F, Pan L, Li T, Diulus JT, Asthagiri A, Weaver JF. J Phys Chem C, 2014, 118: 28647–28661CrossRefGoogle Scholar
  25. 25.
    Zhang F, Li T, Pan L, Asthagiri A, Weaver JF. Catal Sci Technol, 2014, 4: 3826–3834CrossRefGoogle Scholar
  26. 26.
    Lu S, Wang Y, Liu H, Miao MS, Ma Y. Nat Commun, 2014, 5: 3666CrossRefGoogle Scholar
  27. 27.
    Wang Y, Lv J, Zhu L, Ma Y. Comput Phys Commun, 2012, 183: 2063–2070CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186CrossRefGoogle Scholar
  29. 29.
    Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50CrossRefGoogle Scholar
  30. 30.
    Kresse G, Hafner J. Phys Rev B, 1994, 49: 14251–14269CrossRefGoogle Scholar
  31. 31.
    Kresse G, Hafner J. Phys Rev B, 1993, 47: 558–561CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868CrossRefGoogle Scholar
  33. 33.
    Kresse G, Joubert D. Phys Rev B, 1999, 59: 1758–1775CrossRefGoogle Scholar
  34. 34.
    Blöchl PE. Phys Rev B, 1994, 50: 17953–17979CrossRefGoogle Scholar
  35. 35.
    Michaelides A, Liu ZP, Zhang CJ, Alavi A, King DA, Hu P. J Am Chem Soc, 2003, 125: 3704–3705CrossRefGoogle Scholar
  36. 36.
    Liu ZP, Hu P. J Am Chem Soc, 2003, 125: 1958–1967CrossRefGoogle Scholar
  37. 37.
    Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653CrossRefGoogle Scholar
  38. 38.
    Wu H, Qian Y, Lu S, Kan E, Lu R, Deng K, Wang H, Ma Y. Phys Chem Chem Phys, 2015, 17: 15694–15700CrossRefGoogle Scholar
  39. 39.
    Lausche AC, Medford AJ, Khan TS, Xu Y, Bligaard T, Abild-Pedersen F, Nørskov JK, Studt F. J Catal, 2013, 307: 275–282CrossRefGoogle Scholar
  40. 40.
    Mehar V, Kim M, Shipilin M, van den Bossche M, Gustafson J, Merte LR, Hejral U, Grönbeck H, Lundgren E, Asthagiri A, Weaver JF. ACS Catal, 2018, 8: 8553–8567CrossRefGoogle Scholar
  41. 41.
    Shipilin M, Gustafson J, Zhang C, Merte LR, Stierle A, Hejral U, Ruett U, Gutowski O, Skoglundh M, Carlsson PA, Lundgren E. J Phys Chem C, 2015, 119: 15469–15476CrossRefGoogle Scholar
  42. 42.
    Gong XQ, Liu ZP, Raval R, Hu P. J Am Chem Soc, 2004, 126: 8–9CrossRefGoogle Scholar
  43. 43.
    Jin M, Park JN, Shon JK, Kim JH, Li Z, Park YK, Kim JM. Catal Today, 2012, 185: 183–190CrossRefGoogle Scholar
  44. 44.
    Duan Z, Henkelman G. ACS Catal, 2014, 4: 3435–3443CrossRefGoogle Scholar
  45. 45.
    Engel T, Ertl G. J Chem Phys, 1978, 69: 1267–1281CrossRefGoogle Scholar
  46. 46.
    Szanyi J, Kuhn WK, Goodman DW. J Phys Chem, 1994, 98: 2978–2981CrossRefGoogle Scholar
  47. 47.
    Zhang CJ, Hu P. J Am Chem Soc, 2000, 122: 2134–2135CrossRefGoogle Scholar
  48. 48.
    Wang HF, Kavanagh R, Guo YL, Guo Y, Lu GZ, Hu P. Angew Chem Int Ed, 2012, 51: 6657–6661CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringQueen’s University BelfastBelfastUK

Personalised recommendations