Science China Chemistry

, Volume 62, Issue 6, pp 713–718 | Cite as

Supramolecular synthesis of coumarin derivatives catalyzed by a coordination-assembled cage in aqueous solution

  • Shao-Chuan Li
  • Li-Xuan Cai
  • Li-Peng Zhou
  • Fang GuoEmail author
  • Qing-Fu SunEmail author


A self-assembled Pd4L2 cage is employed as a water-soluble molecular flask for the synthesis of functionalized coumarins from a series of salicylaldehyde derivatives and cyanoacetates/malononitrile. The catalytic reaction features mild aqueous conditions and broad substrate scope. Crystal structures of the host-guest complexes for two substrates and one analogous intermediate have been obtained, shedding light on the supramolecular reaction mechanism. Michaelis-Menten kinetic studies were performed in one typical case, revealing that the rate of product formation has been enhanced by over 23-fold in contrast to the background reaction without cage. Moreover, the same reaction catalyzed by a smaller Pd6L4 cage gives a mixture of products and much lower yields, suggesting that fine-tuning on the size and symmetry of the cages’ cavity is crucial for their applications in supramolecular catalysis.


coordination-assembly cage encapsulation Knoevenagel condensation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21825107, 21601183, 21801241, 21571090), Natural Science Foundation of Fujian Province (2016J05051, 2017J05037), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB20000000). We thank the staff of BL17B beamline at National Centre for Protein Sciences Shanghai and Shanghai Synchrotron Radiation Facility, Shanghai, China, for assistance during X-ray data collection.

Supplementary material

11426_2018_9427_MOESM1_ESM.pdf (4.8 mb)
Supramolecular Synthesis of Coumarin Derivatives Catalyzed by a Self-Assembled Cage in Water
11426_2018_9427_MOESM2_ESM.cif (3.5 mb)
Supplementary material, approximately 3.49 MB.
11426_2018_9427_MOESM3_ESM.cif (3.7 mb)
Supplementary material, approximately 3.69 MB.
11426_2018_9427_MOESM4_ESM.cif (4.2 mb)
Supplementary material, approximately 4.19 MB.
11426_2018_9427_MOESM5_ESM.cif (4.2 mb)
Supplementary material, approximately 4.19 MB.
11426_2018_9427_MOESM6_ESM.pdf (933 kb)
Supplementary material, approximately 933 KB.


  1. 1.
    Anfinsen CB. Science, 1973, 181: 223–230CrossRefGoogle Scholar
  2. 2.
    Aehle W. Enzymes in Industry: Production and Applications. 3rd Ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007. 13–33CrossRefGoogle Scholar
  3. 3.
    Breslow R, Dong SD. Chem Rev, 1998, 98: 1997–2012CrossRefGoogle Scholar
  4. 4.
    Meeuwissen J, Reek JNH. Nat Chem, 2010, 2: 615–621CrossRefGoogle Scholar
  5. 5.
    Wiester MJ, Ulmann PA, Mirkin CA. Angew Chem Int Ed, 2011, 50: 114–137CrossRefGoogle Scholar
  6. 6.
    Zarra S, Wood DM, Roberts DA, Nitschke JR. Chem Soc Rev, 2015, 44: 419–432CrossRefGoogle Scholar
  7. 7.
    Kuijpers PF, Otte M, Dürr M, Ivanović-Burmazović I, Reek JNH, de Bruin B. ACS Catal, 2016, 6: 3106–3112CrossRefGoogle Scholar
  8. 8.
    Brown CJ, Toste FD, Bergman RG, Raymond KN. Chem Rev, 2015, 115: 3012–3035CrossRefGoogle Scholar
  9. 9.
    Li XF, Yu SB, Yang B, Tian J, Wang H, Zhang DW, Liu Y, Li ZT. Sci China Chem, 2018, 61: 830–835CrossRefGoogle Scholar
  10. 10.
    Purse BW, Rebek Jr J. Proc Natl Acad Sci USA, 2005, 102: 10777–10782CrossRefGoogle Scholar
  11. 11.
    Zhang W, Yang D, Zhao J, Hou L, Sessler JL, Yang XJ, Wu B. J Am Chem Soc, 2018, 140: 5248–5256CrossRefGoogle Scholar
  12. 12.
    Mondal B, Acharyya K, Howlader P, Mukherjee PS. J Am Chem Soc, 2016, 138: 1709–1716CrossRefGoogle Scholar
  13. 13.
    Chen Y, Huang F, Li ZT, Liu Y. Sci China Chem, 2018, 61: 979–992CrossRefGoogle Scholar
  14. 14.
    Sinha I, Mukherjee PS. Inorg Chem, 2018, 57: 4205–4221CrossRefGoogle Scholar
  15. 15.
    Cram DJ. Angew Chem Int Ed, 1988, 27: 1009–1020CrossRefGoogle Scholar
  16. 16.
    Roberts DA, Pilgrim BS, Nitschke JR. Chem Soc Rev, 2018, 47: 626–644CrossRefGoogle Scholar
  17. 17.
    Saalfrank RW, Maid H, Scheurer A. Angew Chem Int Ed, 2008, 47: 8794–8824CrossRefGoogle Scholar
  18. 18.
    Tranchemontagne DJ, Ni Z, O’Keeffe M, Yaghi OM. Angew Chem Int Ed, 2008, 47: 5136–5147CrossRefGoogle Scholar
  19. 19.
    Chakrabarty R, Mukherjee PS, Stang PJ. Chem Rev, 2011, 111: 6810–6918CrossRefGoogle Scholar
  20. 20.
    Yang D, Zhao J, Yang XJ, Wu B. Org Chem Front, 2018, 5: 662–690CrossRefGoogle Scholar
  21. 21.
    Wiester MJ, Ulmann PA, Mirkin CA. Angew Chem, 2011, 123: 118–142CrossRefGoogle Scholar
  22. 22.
    Cullen W, Misuraca MC, Hunter CA, Williams NH, Ward MD. Nat Chem, 2016, 8: 231–236CrossRefGoogle Scholar
  23. 23.
    Yoshizawa M, Tamura M, Fujita M. Science, 2006, 312: 251–254CrossRefGoogle Scholar
  24. 24.
    Kaphan DM, Toste FD, Bergman RG, Raymond KN. J Am Chem Soc, 2015, 137: 9202–9205CrossRefGoogle Scholar
  25. 25.
    Yoshizawa M, Klosterman JK, Fujita M. Angew Chem Int Ed, 2009, 48: 3418–3438CrossRefGoogle Scholar
  26. 26.
    Jono K, Suzuki A, Akita M, Albrecht K, Yamamoto K, Yoshizawa M. Angew Chem Int Ed, 2017, 56: 3570–3574CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Tiefenbacher K. J Am Chem Soc, 2013, 135: 16213–16219CrossRefGoogle Scholar
  28. 28.
    Preston D, Lewis JEM, Crowley JD. J Am Chem Soc, 2017, 139: 2379–2386CrossRefGoogle Scholar
  29. 29.
    Li K, Zhang LY, Yan C, Wei SC, Pan M, Zhang L, Su CY. J Am Chem Soc, 2014, 136: 4456–4459CrossRefGoogle Scholar
  30. 30.
    Jing X, He C, Yang Y, Duan C. J Am Chem Soc, 2015, 137: 3967–3974CrossRefGoogle Scholar
  31. 31.
    Pluth MD, Bergman RG, Raymond KN. Angew Chem Int Ed, 2007, 46: 8587–8589CrossRefGoogle Scholar
  32. 32.
    Hastings CJ, Fiedler D, Bergman RG, Raymond KN. J Am Chem Soc, 2008, 130: 10977–10983CrossRefGoogle Scholar
  33. 33.
    Zhao C, Sun QF, Hart-Cooper WM, DiPasquale AG, Toste FD, Bergman RG, Raymond KN. J Am Chem Soc, 2013, 135: 18802–18805CrossRefGoogle Scholar
  34. 34.
    Murase T, Sato S, Fujita M. Angew Chem Int Ed, 2007, 46: 5133–5136CrossRefGoogle Scholar
  35. 35.
    Zhang Q, Catti L, Pleiss J, Tiefenbacher K. J Am Chem Soc, 2017, 139: 11482–11492CrossRefGoogle Scholar
  36. 36.
    Zhang Q, Tiefenbacher K. Nat Chem, 2015, 7: 197–202CrossRefGoogle Scholar
  37. 37.
    Hastings CJ, Pluth MD, Bergman RG, Raymond KN. J Am Chem Soc, 2010, 132: 6938–6940CrossRefGoogle Scholar
  38. 38.
    Wang ZJ, Brown CJ, Bergman RG, Raymond KN, Toste FD. J Am Chem Soc, 2011, 133: 7358–7360CrossRefGoogle Scholar
  39. 39.
    Samanta D, Mukherjee S, Patil YP, Mukherjee PS. Chem Eur J, 2012, 18: 12322–12329CrossRefGoogle Scholar
  40. 40.
    Kang J, Rebek J. Nature, 1997, 385: 50–52CrossRefGoogle Scholar
  41. 41.
    Murase T, Horiuchi S, Fujita M. J Am Chem Soc, 2010, 132: 2866–2867CrossRefGoogle Scholar
  42. 42.
    Murase T, Nishijima Y, Fujita M. J Am Chem Soc, 2012, 134: 162–164CrossRefGoogle Scholar
  43. 43.
    Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S. Molecules, 2009, 14: 939–952CrossRefGoogle Scholar
  44. 44.
    Cai LX, Li SC, Yan DN, Zhou LP, Guo F, Sun QF. J Am Chem Soc, 2018, 140: 4869–4876CrossRefGoogle Scholar
  45. 45.
    Fujita M, Oguro D, Miyazawa M, Oka H, Yamaguchi K, Ogura K. Nature, 1995, 378: 469–471CrossRefGoogle Scholar
  46. 46.
    He X, Yan Z, Hu X, Zuo Y, Jiang C, Jin L, Shang Y. Synth Commun, 2014, 44: 1507–1514CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina
  2. 2.College of ChemistryLiaoning UniversityShenyangChina

Personalised recommendations